Energy, Carbohydrates and Fats - Mark Scheme # Q1. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (i) | correct numbers from table used to
calculate increase (1) | Example of calculation
12886-10090 or 2796 | | | | correct answer (1) | (Answer /
10090)*100 =
27.71(%) / 27.7(%) /
28(%) | | | | | Correct answer
without working gains
full marks | (2) | | Question
Number | Answer | Mark | |--------------------|--|------| | (ii) | The only correct answer is C - 2223 kcal | | | | A is not correct because the decimal place is in the wrong place as they have not taken into account converting kJ to joules or calories to kcal. | | | | B is not correct because the decimal place is in the wrong place as they have not taken into account converting kJ to joules or calories to kcal. | | | | D is not correct because they have not taken into account converting kJ to joules or calories to kcal. | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|-------------------------------------|------| | (iii) | An answer that makes reference to the following: | Answer must be in context of energy | | | | stored as {glycogen / fat / lipids} (in
body cells) (1) | | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|------------------------|------| | (i) | | Example of calculation | | | | correct figures from graph used
to calculate total cholesterol | 28 + 136 = 164 | | | | value for ratio correctly calculated | 5.9:1 / 5.86:1 | | | | | One mark for 164:28 | (2) | | Question | Indicative content | | |----------|---|--| | Number | | | | * (ii) | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. | | | | The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | | | | Basic information • testosterone increases production of { LDL / cholesterol } • testosterone {increases breakdown of / reduces } HDL • { high cholesterol / LDL } associated with increased risk of {CVD / atherosclerosis} | | | | role of HDL in transporting cholesterol from the bloodstream to the liver role of LDL in accumulation of cholesterol and development of atherosclerosis | | | | testosterone associated with increased synthesis of the enzyme HMGCR which is involved in cholesterol production { performance enhancing drugs / testosterone } can harm the health of an athlete by increasing risk of CVD | | | Level | Mark | Descriptor | | |---------|-------|--|---| | Level 0 | Marks | No awardable content | | | Level 1 | 1-2 | An explanation may be attempted but with limited interpretation or analysis of the scientific information with a focus on mainly just one piece of scientific information. The explanation will contain basic information with some attempt made to link knowledge and understanding to the given context. | Increase in CVD due to increase in cholesterol/LDL due to increase in production/ rate of breakdown | | Level 2 | 3-4 | An explanation will be given with occasional evidence of analysis, interpretation and/or evaluation of both pieces of scientific information. The explanation shows some linkages and lines of scientific reasoning with some structure. | Explanation of the role of LDL Development of atherosclerosis | | Level 3 | 5-6 | An explanation is made which is supported throughout by sustained application of relevant evidence of analysis, interpretation and/or evaluation of both pieces of scientific information. The explanation shows a well-developed and sustained line of scientific reasoning which is clear and logically structured. | Links made between all
data. Explanation of the role
of HMGCR
Detailed description of the
effect on atherosclerosis | # Q3. | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (a) | Idea that (a change in) one variable (directly) results in the change of another variable; | ALLOW causes, affects, etc
and clear examples
Eg increase in blood
cholesterol causes an
increase in the risk of CVD
IGNORE correlation, link,
relationship, trend, etc
alone | (1) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (b)(i) | reference to peptide
bonds (joining
amino acids); | | | | | between amino
group (of one amino
acid) and carboxyl
group (of another) /
eq; | 2. ALLOW from a labelled diagram ALLOW NH ₂ and COOH | | | | the sequence of amino acids is the primary structure of the protein / eq; | | | | | 4. reference to folding (of primary structure) held together by bonds / eq; | 4. ALLOW ref to alpha helix or beta pleated sheet | | | | {disulfide bridges / eq} / {hydrogen / H} bonds / ionic bonds / Van der Waals forces ; | | | | | 6. between the R groups / eq; | | (4) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|------------------------|------| | (b)(ii) | HDL is smaller; HDL contains
more protein /
eq; | ALLOW converse for LDL | | | | 3. HDL contains
less cholesterol /
eq ; | | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (c)(i) | 1. (risk due to) high
blood pressure has
fallen overall / eq; | Answers should cover total
time period and not just
1980-1990 | | | | (risk due to) high
blood cholesterol
has fallen overall /
eq; | | | | | 3. (risk due to) obesity
has risen overall /
eq ; | | | | | 4. obesity was the lowest risk factor but is now the highest / eq; | | | | | 5. credit use of manipulated figures ; | 5. only credit overall change
figures e.g.
17% drop for high blood
pressure
16% drop for high blood
cholesterol | | | | | 10.5% increase in obesity | (3) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--------------------------------------|------| | (c)(ii) | people more aware
of the risks / eq; | 1. ALLOW more aware of healthy diets | | | | people consuming foods
with lower {cholesterol
levels / saturated fats /
eq} / eq; | | | | | people consuming foods with more fibre in them / eq; | | | | | 4. use of statins / eq ; | 4. Use of sterols/named example | | | | 5. more screening / eq
; | 5. ALLOW self testing | | | | 6. more exercise / eq; | | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (c)(iii) | Any two from: | | | | | (being) male increase in age lack of exercise / inactivity smoking genetics high alcohol consumption high salt diet high saturated fat intake stress diabetes; | IGNORE fat, LDL or cholesterol consumption | (1) | # Q4. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (i) | A description that makes reference to two of the following: | | | | | carrier protein (in cell surface membrane) | IGNORE channel protein | | | | (glucose moves from) high to low concentration | ALLOW 'down a
concentration
gradient' | | | | glucose binds to (carrier) protein /
(carrier) protein changes shape to
move glucose (across the
membrane) (1) | | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (ii) | An explanation that makes reference to three of the following: | | | | | polymer of glucose to provide glucose for respiration | ALLOW
polysaccharide /made
of many glucose
monomers DO NOT
ALLOW β- glucose | | | | {branched / contains 1,6-glycosidic
bonds / has many terminal ends} for
rapid hydrolysis | IGNORE 'easy to
hydrolyse' ALLOW
break down instead of
hydrolyse | | | | compact to allow large amount (of
glucose / energy) to be stored in a
small space / insoluble therefore no
osmotic effect on cells | | (3) | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---------------------|------| | (i) | A description that makes reference to the following: | | | | | condensation (1) involving OH groups (on both molecules) | | | | | / water is formed (1) | | (2) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (ii) | An answer that makes reference to the following: | | | | | both are formed from two molecules of
(a)glucose / both contain a glycosidic
bond (1) | ALLOW both are
disaccharides of glucose
DO NOT ALLOW β -
glucose | | | | maltose has (α-)1,4 linkage and
trehalose has (α-)1,1 linkage / in
trehalose one of the glucose monomers
is inverted (1) | | | | | | | (2) | # Q6. | Question | Answer | Additional Guidance | Mark | |----------|--|--|------| | Number | | | | | | glycosidic bond
correctly drawn; | IGNORE labelling of bond | | | | molecule of water shown to be produced ; | ACCEPT water named or formula | | | | 3. remaining groups
around disaccharide | 3. DO NOT ACCEPT two separate glucose molecules | | | | drawn correctly ; | NB: check carefully H on C5 | (3) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(i) | D; | (1) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(ii) | A; | (1) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(iii) | B; | (1) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(iv) | D; | (1) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (b)(i) | 1. idea that only one factor has changed; 2. if intake went up, increase risk / obesity a risk factor / if intake went down could decrease CHD risk / eq; | ACCEPTLess valid investigation / method , to allow comparison, variables need to be controlled IGNORE reliability, fair test | | | | | | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|----------------------|------| | (b)(ii) | both diets decrease the risk eq; | | | | | both diets have less saturated fats / eq; | | | | | 3. saturated fat associated with heart disease / eq; | | | | | idea that changing to unsaturated lipids has the greater effect; | 4. 30% more decrease | | | | 5. idea that excess
carbohydrates may be
stored as saturated lipids ; | | | | | 6. idea that unsaturated lipids change HDL/LDL ratio; | | (3) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a (i) | D; | (1) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a (ii) | В; | (1) | | Question
Number | Answer | Mark | | |--------------------|--------|------|--| | (a)(iii) | В; | (1) | | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(iv) | A; | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (b)(i) | | 1, 2, 3: ACCEPT converse, similar / little difference.
Decreased/reduced is not equivalent to lower. | | | | | 1. IGNORE same | | | | (total) cholesterol levels in people with mutation are not higher than people without mutation / eq; LDL (cholesterol) levels in people with mutation are not higher than people without mutation / eq; | 2. IGNORE same | | | | 3. HDL (cholesterol) levels in people with mutation are not lower than people without mutation / eq; | 3. ACCEPT ref to HDL to LDL ratio higher in people with the mutation. | | | | 4. credit correct use of manipulated figures ; | 4. must be manipulated e.g. difference calculated and not just quoted (difference in LDL= 10, total cholesterol= 7) ACCEPT without units | (: | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|------------------|-----------------------------------|------| | (b)(ii) | (plant) statin ; | IGNORE named drug, sterol, stanin | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (b)(iii) | | NOT cancer or reduced vitamin absorption IGNORE affect | | | | 1. muscle {inflammation / pain / eq} | ACCEPT problems as equivalent to damage etc 2. ACCEPT disease | | | | 2. liver {damage / failure / eq} | | | | | 3. joint {aches / pains / eq} | 4. ACCEPT vomiting | | | | nausea/ constipation / diarrhoea / indigestion /
flatulence / loss of appetite / eq | E ACCEPT I'I | | | | 5. kidney {damage /failure /eq} | damage /failure /eq} 5. ACCEPT kidney disease | | | | 6. cataracts / blurred vision | | | | | 7. diabetes | | | | | 8. allergies / skin inflammation / skin rash / eq | | | | | respiratory problems / persistent cough / nosebleeds / eq | | | | | headaches / dizziness / depression / insomnia / ringing
in ears / fatigue / eq ; | 10. ACCEPT mood swings | (1) |