ANSWERS & MARK SCHEMES

QUESTIONSHEET 1	
(a) cytoplasm;	1
(b) (i) glucose activated by addition of phosphate/by ATP; therefore intermediate B is at a higher energy level;	2
(ii) energy taken from B and C; trapped on ATP/NADH;	2
(c) enters mitochondrion; converted to acetylcoenzyme A;	2
 (d) Any three of: NAD/FAD/ receive electrons / H⁺/ are reduced/ coenzymes are reoxidised in the electron transport chain/ coenzymes are reoxidised in the electron transport chain/ 	
generating ATP/ by oxidative phosphorylation;;;	3
то	OTAL 10

QUESTIONSHEET 2

(a) (i)	adenine;	1
(ii)	ribose;	1
(b) (i)	intermediate position; means that they can accept or donate (energy rich) phosphate;	2
(ii)	Any two of: (very) high energy content/ allows rapid/sudden contraction/ since ATP synthesis is relatively slow;;	2
		TOTAL 6

QUESTIONSHEET 3

Statement	ATP production in]
	Chloroplast	Mitochondrion]
Electrons are excited by photons	✓	×] ;
Electrons pass through carriers	✓	✓	
Involves oxidative photophosphorylation	✓	×];
ATP produced from ADP and phosphate	✓	✓	
Occurs in day and night	×	✓	

TOTAL 5

ANSWERS & MARK SCHEMES

QUESTIONSHEET 4

QUESTIONSHEET 4	
(a) X pyruvate/acetyl coenzyme A;Y CO,;	2
$1 CO_2$,	4
(b) (i) matrix of mitochondrion;	1
(ii) cristae/inner membrane of mitochondria;]
 (c) carriers are alternately reduced and oxidised; gain of electrons/hydrogen = reduction/loss of electrons/hydrogen = oxidation; linked to ATP synthesis/oxidative phosphorylation; 	3
(d) cyanide stops the flow of electrons/blocks the electron transport chain/blocks cytochrome oxidase; prevents regeneration of NAD/FAD from NADH/FADH or prevents reoxidation of NADH/FADH/cytoch thus ATP synthesis is inhibited;	nromes; max 2
	TOTAL 9
QUESTIONSHEET 5	
(a) X ATP;	
Y CO ₂ /hydrogen/H;	
(b) glycolysis in cytoplasm; Krebs in matrix of mitochondria;	2
(c) high levels of ATP;	
inhibit conversion of intermediate 1 to intermediate 2; prevents excess production of ATP;	
	TOTAL 7
QUESTIONSHEET 6	
(a) cytoplasm;	1
(b) provides activation energy/makes glucose more reactive;	1
(c) dehydrogenation/oxidation/redox reaction/(if say reduction must specify NAD \rightarrow NADH);	1
 (d) (i) hydrogen from NADH used to reduce pyruvate to lactate; (ii) hydrogen from NADH used to reduce pyuvate to ethanol; 	2
(ii) "Hydrogen/electrons removed from substrate/intermediate/named intermediate;(c) hydrogen/electrons removed from substrate/intermediate/named intermediate;	2

reference to carriers/NAD/FAD; passed to successively lower energy levels; energy released used to convert ADP into ATP/ phosphorylate ADP; max 3 TOTAL 8

A2.1

ANSWERS & MARK SCHEMES

QUESTIONSHEET 7

Stage	Site	Oxygen Needed?	What Happens?
Glycolysis	Cytoplasm;	No;	Glucose is converted to pyruvic acid ; Hydrogen is removed and is passed to the electron carriers.
Link Reaction;	Matrix of Mitochondria	Yes	Pyruvate enters mitochondrion, is decarboxylated, dehydrogenated and combines with coenzyme A to give acetyl coenzyme A. The hydrogen which is removed is passed to the electron carriers.
Kreb's Cycle;	Matrix of Mitochondria;	Yes;	A cyclical series of reactions during which hydrogen is passed to the electron carriers, carbon dioxide is removed and a starting reactant is regenerated.
Electron Transfer Class	Crista/Inner Membrane of Mitochondria;	Yes	The hydrogen from the respiratory reactions is split to release electrons. These pass through carriers and generate ATP ;. The hydrogen reforms and is combined with oxygen to release water.

 (a) Any three of: glucose phosphorylated/activated/ using ATP/ split into 3C/triose phosphate/ oxidation/dehydrogenation of trioses yields pyruvate;;; 	3
(b) (i) cytoplasm;	1
(ii) matrix of mitochondria;	1
 (c) Any three of: ATP binds to enzyme/isocitrate dehydrogenase/ at a site other than the active site/ this changes the shape of the enzyme/active site/ therefore substrate cannot attach and process slowed/ this happens when too much ATP has been made;;; 	3
 (d) Any three of: pyruvate decarboxylated to ethanal/ producing carbon dioxide/ ethanal converted/reduced to ethanol/ enabling NADH to be oxidised to NAD;;; 	4

A2.1

METABOLIC PATHWAYS

ANSWERS & MARK SCHEMES

QUESTIONSHEET 9

(a) Any three of:	
overwatering leads to anaerobic condition/	
anaerobic conditions inhibit electron transport chain/	
thus pyruvic acid/pyruvate has been converted into ethanol/	-
to enable NADH to be reoxidised to NAD;	3
(b) Any two of:	
acetyl coenzyme A can be formed from other substrates/	
from breakdown of fats/	
from deamination of amino acids;;	2
(c) Any four of:	
oxygen supply to muscles is inadequate during severe exercise/	
thus electron transport system inhibited/	
thus NADH cannot be reoxidised/	
pyruvic acid converted to lactic acid/	
changing NADH back to NAD;;;;	4
TC	OTAL 9

QUESTIONSHEET 10

		TOTAL 9
hence no regenera thus Krebs cycle s	nere is no final acceptor for electrons/hydrogen from electron transport chain; ation /reoxidation of coenzymes; stops; chain and Krebs cycle provide most of the ATP;	4
	nate to ADP to produce ATP; rogen from substrates/oxidise substrates/pass hydrogen to acceptors;	2
 (a) (i) lactate/laction (ii) carbon diox (iii) electrons/hy 		3

 (a) (i) organic molecules necessary for enzyme function; not permanently attached to the enzyme; involved in transfer of hydrogen/electrons/acetate groups/energy/any other correct example; 	max 2
(ii) similar to coenzyme but tightly bound to one specific enzyme;	1
(b) vitamin B complex/nicotinic acid/riboflavin is required for synthesis of NAD/FAD; pantothenic acid/coenzyme A required to produce acetyl CoA from pyruvate; less acetyl CoA means less substrate for the Krebs cycle; NAD/FAD are hydrogen acceptors in respiration;	
if deficient electron transport chain may be impaired so less ATP produced;	max 4
	TOTAL 7

ANSWERS & MARK SCHEMES

QUESTIONSHEET 12

(a) glyco	olysis;	1
	ATP; ADP;	2
(c) (i) f	facilitated diffusion/active transport;	1
(ii) c	cytoplasm;	1
(to make glucose reactive/phosphorylation gives energy of activation/keeps glucose inside cell/there are no carriers for glucose-6-phosphate in the cell membrane/keeps concentration of free glucose inside cell low so maintains concentration gradient;	1
• •	they lack mitochondria; therefore rely on glycolysis to provide energy;	2
	ΤΟΤΑΙ	8

QUESTIONSHEET 13

(a)	(i) liver;	1
	(ii) deamination/transdeamination;	1
	(iii) limited solubility of ammonia in water means too much water would be lost when excreting the amounts of ammonia produce mammals being land animals cannot risk losing too much water;[allow 1 mark only if say 'would incur too much water loss]	uced; 2
(b)	(i) liver;	1
	(ii) (by-product of) respiration;	1
	(iii) because ammonia and carbon dioxide are attached to it to assemble urea; it is reformed when the urea is split off it:	2
	(iv) hydrolysis;	1
	 (v) urea is more soluble in water than ammonia; thus involves less water loss in urine which is advantageous to a land animal/no need to carry large volumes of urine around 	1;

2

TOTAL 11

ANSWERS & MARK SCHEMES

QUESTIONSHEET 14

 (a) diffusion is the movement of molecules down a concentration gradient; energy is released as molecules diffuse; active transport is the movement against a concentration gradient; involves the expenditure of energy/ATP; involves the use of carriers; 	
	max 4
(b) (i) oxidative phosphorylation;	1
(ii) proton pumps;because they move hydrogen ions which are protons;	2
 (iii) enables protons/hydrogen ions to diffuse back across the membrane; ref to proton motive force/surplus of positive ions on inside of membrane; movement of protons back releases energy; 	
which is harnessed by enzyme to convert $ADP + P$ to ATP ;	max 3
	TOTAL 10

•	oon dioxide evolved; me of oxygen absorbed; olecules of carbon dioxide evolved;	
divided by moles/molecules of oxygen used;)		2
(b) (i) $RQ = \frac{114}{160};$	= 0.7125 (allow 0.71);	2
(ii) RQ when resp	iring only carbohydrate would be 1.0;	
	the CO_2 released (6 CO_2) equals volume of O_2 used (6 O_2); iring only fat is 0.7;	
	e both carbohydrate and fat at the same time;	max 3
(c) (i) there would be	e no movement of the fluid in the manometer;	1
fluid in the ma	nometer would move towards the peas;	1
stated suitable	/incubator to keep temperature constant thus avoiding gas volume changes; temperature $(15 - 25^{\circ}C)$;	
	and allow time (at least 10 minutes) to equilibrate; allow to work for suitable time (at least 30 minutes);	max 3
crose tup and t	now to work for suitable time (at least 50 minutes);	inux 5
(iii) glycolysis, Kr	ebs cycle, respiratory chain/electron transport chain;	1
		TOTAL 13

ANSWERS & MARK SCHEMES

QUESTIONSHEET 16

(a) (i)	glucose must be activated/given energy before it can be metabolised/made more reactive; phosphorylating with the energy rich bond of ATP gives glucose the extra energy needed;	2
(ii)	changing to a different structural molecular shape whilst retaining the same empirical/molecular formula;	1
(iii)	enolase is substrate specific for fructose/cannot accept glucose as a substrate;	1
(iv)	to produce reduced NAD/NADH/NADH ₂ ; which can be used/reoxidised in the respiratory chain/electron transport chain; so that ATP is synthesized;	max 2
(b) (i)	yeast respires/produces carbon dioxide and water, using the normal aerobic pathway when oxygen is available; when oxygen is missing NADH_2 has to be reoxidised without the use of the electron transport chain; this is done by decarboxylating pyruvic acid/removing CO ₂ from pyruvic acid, to form ethanal; this is hydrogenated/reduced to ethanol using NADH_2 which is reoxidised to NAD ;	4
(ii)	Lactobacilli are prokaryotic and so have no mitochondria/respiratory chain is not highly organised; thus NADH ₂ is reoxidised by hydrogenating/reducing pyruvic acid to lactic acid;	2
(iii)	yoghurt manufacture;	1
this	tobacilli/bacteria in the mouth/buccal cavity produce lactic acid; can cause decay/erode enamel of teeth; nolase is inhibited then the bacteria cannot produce the lactic acid;	
	dit any reference to fluoride being incorporated into the enamel, thus hardening it)	max 2
	ТОТ	TAL 15

(a) (i)	it is the volume of carbon dioxide /number of carbon dioxide molecules or moles liberated; divided by the volume of oxygen/number of oxygen molecules or moles used;	2
(ii)	because they do not respire only carbohydrate or only fat but a mixture of them; protein is not usually respired in large amounts except in starvation;	2
(iii)	when they are using the carbon dioxide for something else and so not releasing it; for example, in photosynthesising plants;	2
(b) (i)	barley seeds are respiring mainly starch and so have a RQ approaching 1.0; castor oil seeds store oil and so are respiring fat (oil) and so have a RQ approaching 0.7; barley seeds contain little lipid whereas castor oil seeds contain little starch;	max 2
(ii)	photosynthetic leaves/cotyledons/coleoptiles will have formed; thus starch synthesis occurs and both sets of seeds can now respire carbohydrate; initial starch content/oil content probably used up;	max 2
		TOTAL 10

ANSWERS & MARK SCHEMES

QUESTIONSHEET 18

(a) (i)	amino acids cannot be stored since their amine groups are toxic; deamination removes the amine groups of surplus amino acids for excretion;	2
(ii)	in the liver/hepatic cells;	1
(b) (i)	it is respiratory since NADH is produced by dehydrogenation (and this can be used to generate ATP); it also generates pyruvic acid which can be used in the Krebs cycle (to generate more ATP); it is excretory since it removes toxic amine groups as ammonia (for excretion);	3
(ii)	pyruvic acid forms acetyl coenzyme A in the link reaction; which is further metabolised in the Krebs cycle;	2
	NADH is reoxidised to NAD in the respiratory chain/electron transport chain; resulting in ATP synthesis;	2
	ammonia enters the ornithine cycle to be assembled into urea; which is transported by the blood to the kidneys for excretion;	2
		TOTAL 12

QUESTIONSHEET 19

phosphorylation/adding phosphate; ATP/adenosine triphosphate; fructose diphosphate; triose phosphate; NADH; glycolysis; cytoplasm; mitochondrion; inner; respiratory chain/electron transport chain; three; protons/hydrogen ions; oxygen; cytochrome; link; Krebs cycle;

TOTAL 16

 (a) false; body proteins are continually recycled/broken down and replaced; amino acids formed are toxic; so if not immediately used for protein reassembly must be deaminated; surplus dietary amino acids are also deaminated; deamination generates NADH (for ATP synthesis) and so is a respiratory process; 	max 5
 (a) true; camel will be short of water (in desert); water is a byproduct of respiration; respiration of 1 gramme of fat yields more water than respiration of 1 gramme of carbohydrate; almost twice as much water yielded from fat; 	max 4
 (b) false; if oxygen is available yeast respires by the aerobic pathway; when oxygen is not available NADH must be reoxidised in an alternative way; by converting pyruvic acid to ethanol; 	max 3
	TOTAL 12