ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

(a) <i>either</i>	
disease organism injected into an animal stimulates production of antibodies;	
antibodies made by the animal extracted/purified from blood plasma;	
or	
disease organisms injected into mouse stimulates B - lymphocyte production;	
B - lymphocytes fused with cancer cells and produce monoclonal antibodies;	2
(b) (i) disease organisms have antigens on surface;	
antigen shape recognised by antibody and reacts with it (forming a complex);	2
antigen shape recognised by antibody and reacts with it (forming a complex),	2
(ii) binding reaction between antibody and antigen not visible;	
enzyme gives a visible reaction/means of visualising the reaction/antibody/antigen;	2
(c) bind the antigen/disease organism to the well;	
add the blood plasma of the infected person;	
add the enzyme combined with an anti- antibody/antibody to the specific disease antibody;	3
	TOTAL 9
	IUIAL 9

QUESTIONSHEET 2

 (a) (i) antigens on the dead pathogen detected by (T/B) lymphocytes; specific B lymphocytes clone/divide rapidly by mitosis; plasma cells released to blood; 	
plasma cells secrete antibody into blood;	
levels fall once all antigens are destroyed;	max 4
(ii) memory cells formed by first challenge/equivalent allow even greater/faster cloning (and so greater/more an	tibody release); 1
 (b) influenza virus/pathogen has high rate of mutation; polio/tetanus pathogens have low rate of mutation; mutation changes antigens/proteins on surface of pathogen; 	
antibodies unable to recognise changed antigens/new antibody needed to react with changed antigen;	max 2
(c) (i) antibodies against tetanus bacteria;	1
(ii) immediate rise due to injection;	
steady fall because liver destroys the antibodies; lymphocytes are not stimulated/passive immunity so no new antibodies made;	2
Tymphocytes are not sumulated/passive minumery so no new antioodies made,	2
	TOTAL 10

ANSWERS & MARK SCHEMES

QUESTIONSHEET 3

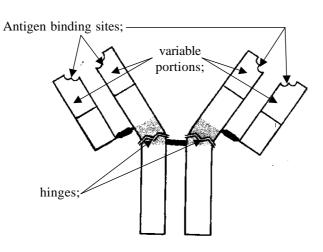
Feature	Cell or cells
Phagocytose bacteria in tissues	neutrophils and monocytes/macrophages;
Secrete antiviral antibodies	plasma cells;
Release histamine and serotoninin in allergies	basophils and mast cells;
Manufactured in red bone marrow	neutrophils, eosinophils, basophils and monocytes; (any three for a mark)
Initially stored in the thymus gland	T-lymphocytes;
Main cell of humoral immunity	B-lymphocytes/plasma cells;
Combats effects of histamine in allergic responses	eosinophils;
Acts as a phagocyte after transformation into a tissue macrophage	monocyte;
Phagocytoses the debris of antibody-antigen reactions	eosinophils;
Differentiates into plasma cells	B-lymphocytes;
Differentiates into cytotoxic killer cells	T-lymphocytes;
Enables rapid immune response to a second infection	memory cells;
Manufactured in lymphatic tissue	B-lymphocytes, T-lymphocytes, plasma cells, memory cells, monocytes; (any three for a mark)

TOTAL 13

AS 15

IMMUNITY

ANSWERS & MARK SCHEMES


QUESTIONSHEET 4

(a) (i)	an antigen; on the surface of a red blood cell;	2
(ii)	an antibody; dissolved in blood plasma;	2
(iii)	when agglutinin a comes into contact with agglutinogen A/when agglutinin b comes into contact with agglutinogen due to incompatible blood transfusion;	n B;
	red cells are clumped together by agglutinins reacting with agglutinogens; ref one molecule of agglutinin combines with five molecules of agglutinogen/agglutinin has a valency of five, which makes clumping very effective; clumped cells can block small blood vessels causing glomerular/kidney/heart/brain damage/other correct example/ may result in death;	ax 4
(b) (i)	group B into group A; group A into group B; group AB into group A; group AB into group B;	4
(ii)	agglutinins a and b will not clump the red cells in A, B or AB blood; because they are greatly diluted by the greater blood volume of the recipient; would only become a problem if large volumes were transfused; mag	ax 2

TOTAL 14

QUESTIONSHEET 5

(a) (i)

3

2

1

- (ii) antigenic groups may vary slightly in their distances apart (on the bacterium/virus/red cell/other example); hinges allow antibody structure to adjust for this/antibody can still attach to antigenic sites;
- (iii) better 'clumping'/agglutination ability/can clump together up to five antigenic structures/virions/bacteria/red cells/ other correct example;

(b)	(i)	plasma cells;
-----	-----	---------------

(ii) $2000 \times 60 \times 24$; = 172,800,000 (antibody molecules day⁻¹); (units are in the question so not essential to answer)**2**

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

(a) (i)	macrophages congregate in regions of infection in the tissues/ref chemotaxic attraction; engulf bacteria and digest them/ref to lysozyme activity; carry antigens into lymph nodes/spleen/nearest lymphatic tissue; present antigens to T-cells/bind to T-cells with HLA receptors and present antigen to T-cell; thus enable T-cells in lymphatic tissue to become activated by antigens (from elsewhere in the body);	nax 4
(ii)	means that thousands/millions of cells are available to destroy/disable the antigen; since they are genetically identical they will all recognise/react against the (specific) antigen;	2
(b) (i)	leave lymph nodes/spleen/lymphatic tissue/lymph flow/blood stream and move to site of infection; ref amoeboid action/chemotaxis; congregate/collect around bacteria and secrete cytotoxic chemicals over them; ref to specific cytotoxins/lymphotoxin/perforin; also secrete chemicals/lymphokines that stimulate development of more killer T-cells/attract macrophages to the in n	fection; nax 3
(ii)	retain the memory of the antigen allowing a rapid response if a second infection occurs/ gives long term immunity against the antigen;	1
(iii)	produce an interleukin/lymphokine that induces production of more killer T-cells/aid B-cells/ plasma cells to develop/produce more antibodies;	1

QUESTIONSHEET 7

Feature	T-cells	B-cells
May produce antibodies	x	√ ;
Are classed as small lymphocytes	√	✓ ;
Develop in the thymus	1	x ;
May secrete interferon	√	X ;
Give passive immunity to the organism which possesses them	x	X ;
Give active immunity to the organisms which possesses them	√	✓ ;

TOTAL 6

AS 15

IMMUNITY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 8

 (a) diphtheria bacilli are stable and do not mutate/rarely mutate into new (antigenic) forms; influenza viruses constantly mutate to produce new (antigenic) forms; new strains of virus appear every few months; thus memory cells for diphtheria antigens are effective throughout life but memory cells against influenza may not recogn strains; 	nise the new max 3
 (b) smallpox virus showed little variation (antigenically) across the world/basically all the same strain/vaccines were available strains; smallpox victims could be easily isolated thus preventing cross infections (of people not yet immunised when cases difficult to prevent cross infection with cholera/tuberculosis which is in contaminated water/food supplies/malaria with a vector; these organisms have a higher mutation rate which changes their (antigenic) structure more frequently than smallpox 	did occur); mosquito
 (c) colostrum/breast milk contains many antibodies produced in the mother; these can be absorbed by the baby via the stomach (from the milk); they can persist in the baby's body for several weeks; giving short term immunity/passive immunity against many diseases/prevalent diseases; (d) antibodies/killer T-cells are produced against the Streptococci; some cell surfaces of the infected person may antigenically resemble the Streptococci; 	max 3
for example, β-cells of the islets of Langerhans/thyroid cells/glomeruli; thus body's own antibodies/killer T-cells may destroy these body tissues;	max 3
ТО	0TAL 12

QUESTIONSHEET 9

(a) (i)	antigen in lymph/blood/plasma; attaches to antibody on B-cell in lymph node/spleen; B-cell processes/modifies antigen and presents it on the cell membrane; presented antigen and self HLA antigen can then be recognised by receptors on helper T-cell; this produces substances which stimulate mitosis and differentiation of B-cells/activates B-cells;	max 4
(ii)	many cells produced so that immune response is bigger/sufficient to counter large quantities of antigen; all cells genetically identical so that they respond to the same antigen/immune response is focussed on same ar	ntigen; 2
(iii)	secrete specific antibody against antigen; antibody molecules are released from lymph node/spleen into lymph/blood; each cell can release up to 2000 antibody molecules per second for about five days/huge quantities of antibodies ar	e released; max 2
(iv)	retain memory of specific antigen so that a quicker/ more forceful response can occur to a second infection by the same	e antigen; 1
take the s	primary response involves the activation/multiplication of lymphocytes and elimination of the antigens; so 7 – 10 days to develop/ levels of antigen rise slowly/ lasts about two weeks; secondary response involves activation of (long lived) memory cells; so 2-3 days to develop/levels of antigen rise much higher/can last for months;	max 3

ANSWERS & MARK SCHEMES

QUESTIONSHEET 10

 (a) chicken pox infection in babies/children is not serious/usually mild/relatively short lasting/very frequent; and gives excellent life long immunity; measles/polio are killer diseases/cause serious long term damage; thus must give vaccination against these to prevent infection/reduce impact of infection; 	max 3
 (b) infection from tetanus bacteria/spores can set up a rapid infection; which could be fatal; secondary immune response to tetanus takes time/several days to become effective; especially if booster immunisations have been missed; 	
thus the antibody is injected to give immediate passive immunity/immediate protection;	max 3
 (c) non-infectious allergens such as inhaled pollen; can provoke the acute inflammatory reaction; in which basophils/mast cells release histamine to make blood vessels more leaky/more dilated leading to nasal con antihistamines will neutralise the histamine thus reducing the unpleasant effects/symptoms; 	gestion; max 3
 (d) epitomes/chemical nature of antigens are similar for cowpox and smallpox; thus antibodies against cowpox will be effective against smallpox; epitomes/chemical nature of antigens are different for chickenpox and smallpox; thus previous infection by chickenpox/chickenpox antibodies will not protect against smallpox infection; 	max 3
Т	OTAL 12

QUESTIONSHEET 11

(a) ready made antibodies are transferred to the individual;	
across the placenta from mother to foetus/baby in womb;	
in milk from mother to baby during breast feeding;	
ref to tetanus/rabies antibody given after possible infection/anti snake venom antibodies;	
gives short term immune protection only/lasts only a few weeks;	
but can give protection until acquired immunity develops;	max 4

- (b) (i) naturally acquired immunity is <u>accidentally</u> obtained due to exposure to a particular antigen (during the normal course of life); artificially acquired immunity is the result of an <u>intentional</u> exposure to an antigen through immunisation; **2**
 - viruses: polio; measles; rubella/German measles;
 bacteria: diphtheria, whooping cough, tetanus; tuberculosis;
 (accept other examples if correct)
- (c)

protection by vaccination	no protection by vaccination	
whooping cough German measles measles diphtheria tuberculosis tetanus polio	lung cancer diabetes mellitus schizophrenia asthma cystic fibrosis HIV AIDS	; ; ; ; ; ;

(diseases can be in any order, but delete a mark for each error or omission)

7

max 2

max 2

AS 15

IMMUNITY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 12

(a) (i) no response visible from first injection for 10 days, response to second injection visible at 3 - 4 days; much higher levels of antibody appeared (in the plasma/blood) after the second injection; antibody titre/level falls fairly sharply after 20 days from the first injection, persists/does not fall much after second injection; 3 (ii) memory cells can be immediately activated after second injection allowing a rapid response; after first injection B-cells must receive and modify the antigen and interact with helper T-cells before activation (and this takes time); after first injection a few activated B-cells must undergo many mitoses to produce a clone of several million (antibody producing) plasma cells; several million memory cells probably exist and only need a few mitoses to produce the needed number of plasma cells; thus more plasma cells means more antibody molecules produced more quickly (after second injection); larger number of antibody molecules means that they will persist longer/take longer to be recycled by liver; max4 (a) body cells have many surface antigens which differ from person to person; these can provoke an immune response when foreign tissue is transplanted into another person; resulting in T-cell immunity/cellular immunity/production of killer T-cells; which will destroy/damage the transplanted tissue; tissues to be transplanted must have antigens which closely match those of the recipient; max 3

TOTAL 10