Mark schemes

Q1.

- (a) 1. Light/I band only actin;
 - 2. H zone/band only myosin;
 - 3. Darkest/overlapping region actin **and** myosin;

Accept any suitable descriptions that distinguishes these regions e.g. 'white band' for 1, 'light grey' for 2 and 'dark grey' for 3. Ignore references to A band.

3

Q2.

(a) 1. Low<u>er</u> (force of contraction) in mouse/**B** (than control/100%) below 29 °C

OR

Low<u>er</u> (force of contraction) in rabbit/**D** (than control/100%) below 26.5 °C;

Accept any temperature below 29 °C for mouse/B or any specified temperature below 26.5 °C for rabbit/**D**. Accept 27 °C for 26.5 °C and accept 28.5 °C for 29 °C.

 High<u>er</u> (force of contraction) in mouse/B (than control/100%) above 29 °C

OR

High<u>er</u> (force of contraction) in rabbit/**D** (than control/100%) above 26.5 °C;

Accept any temperature above 29 °C for mouse/**B** or any temperature above 26.5 °C for rabbit/**D**.

Accept 27 °C for 26.5 °C and accept 28.5 °C for 29 °C.

3. Only (used) mouse **and** rabbit

OR

No other organism/species used;

Accept only two animals/species used.

4. Body temperature of mouse/rabbit higher (than temperatures investigated);

Accept body temperature of mouse/rabbit not known

- Only used one/0.5 pH (below typical pH)
 OR

 (Should) use more pH values;
- 6. (Used) isolated muscle tissue;
- 7. No stats test to see if (difference is) <u>significant;</u> Ignore SD.

4 max (b) 1. (Less/No) tropomyosin moved from binding site OR Shape of tropomyosin not changed so binding site not exposed/available; Ignore troponin. Reject active site only once. 2. (Fewer/No) actinomyosin bridges formed; Accept actin and myosin do not bind. Reject active site only once. 3. Myosin head does not move OR Myosin does not pull actin (filaments) OR (Less/No) ATP (hydrol)ase (activation); Reject ATP synthase. Do not penalise reference to calcium rather than calcium ions. Credit all mark points even if context relates to what happens when calcium ions are present. 3 1. Regenerates/produces NAD (c) OR oxidises reduced NAD; Reject NADP and any reference to FAD. Accept descriptions of oxidation e.g. loss of hydrogen. 2. (So) glycolysis continues; Accept description of glycolysis e.g. glucose to pyruvate. Accept 'for oxidising/converting triose phosphate to pyruvate'. 2 [9] Q3. (a) Increase in aerobic respiration

OR Increase in / more mitochondria OR Increase in / more slow muscle fibres; Ignore: reference to Krebs cycle as this in the stem of the question.

1 max

- (b) 1. (More aerobic respiration) produces more ATP;
 - 2. Anaerobic respiration delayed;
 - 3. Less or no lactate;

(c)

(d)

	 Accept: produces <u>ATP</u> faster. Accept: aerobic respiration can continue. Accept : no anaerobic respiration. Accept: lactic acid. 	3
1. 2.	Correct answer in range 84 to 84.2 = 2 marks; For one mark accept incorrect answer but shows r (radius) = 0.63 (mm) OR d (diameter) = 1.26 (mm); 2 lanore: numbers after 0.63 and 1.26	
		2
1.	A numerical comparison of range = 2 marks i.e. Young (fibres) range 14/15 – 47/48 (μm) and adult (fibres) 17/18 – 86/87/88 (μm) OR	
	Young (fibres) range 32/33/34 and adult (fibres) range	
2.	68/69/70/71; Comparison of range without numbers = one mark i.e. Adult (fibres) greater range / spread / variation (of diameters) OR	
3.	Young (fibres) smaller range / spread (of diameters); Comparison of mode = one mark i.e. Adult (fibres) peak/most common/frequent/mode at 50 (µm) and young (fibres) peak/most common/frequent/mode at 30 (µm):	
	1. Accept: one mark for comparison of minimum values i.e. 14/15 compared to 17/18 Allow one mark for comparison of maximum values i.e. 47/48 compared to 86/87/88.	
	1. Note: comparison of both maximum and	
	 Accept: adult (fibres) peaks at higher diameter or young (fibres) peak / most frequent at lower diameter. 	
	<i>3. Reject: reference to mean / average.</i>	2 max

- Q4.
 - (a) C = M line / M disc / myosin filament
 - D = mitochondrion
 - E = myofibril
 - (b) Sarcomere

3

[8]

			1	
(c)	Ansv	ver in range 1.14–1.18	1	
(d)	1.	As a store of glucose Ignore provide energy OR To be hydrolysed to glucose; Ear reapiration / to provide ATD:		
(e)	2.	Low pH changes shape of calcium ion receptors Do not accept tropomyosin does not move	2	
	2.	Fewer calcium ions bind to tropomyosin; Accept troponin		
	3.	Fewer tropomyosin molecules move away;		
	4.	Fewer binding sites on actin revealed;		
	5.	Fewer cross-bridges can form		
		OR		
		Fewer myosin heads can bind Must include idea of fewer at least once	3 max	[10]
Q5.				
(a)	1. 2. 3. 4. 5. 6. 7.	Calcium ions diffuse into myofibrils from (sarcoplasmic) reticulur (Calcium ions) cause movement of tropomyosin (on actin); (This movement causes) exposure of the binding sites on the actin; Myosin heads attach to binding sites on actin; Hydrolysis of ATP (on myosin heads) causes myosin heads to bend; (Bending) pulling actin molecules; Attachment of a new ATP molecule to each myosin head causes myosin heads to detach (from actin sites).	n; 5 max	
(b)	1.	Releases relatively small amount of energy / little energy lost as heat; <i>Key concept is that little danger of thermal death of</i> <i>cells</i>		
	2.	Releases energy instantaneously; Key concept is that energy is readily available		

AQA Biology A-Level - Contraction of Skeletal Muscles MS

PhysicsAndMathsTutor.com

- Phosphorylates other compounds, making them more reactive; Can be rapidly re-synthesised; Is not lost from / does not leave cells. 3.
- 4.
- 5.

2 max

[7]

Q6.

(a)	1. 2.	 (Reaction with ATP) breaks/allows binding of myosin to actin/ actinomyosin bridge; Provides energy to move myosin head; Credit 'breaks' or 'allows' binding to actin (because cyclical) Allow in context of 'power stroke' or 're-cocking' (because cyclical) Ignore contraction on its own 	
(৮)	(1)	Any value between 69.5 and $60.40.(0)$	2
(D)	(1)	Any value between 68.5 and 69.49 $(\%)$;	
		If get difference of 0.9 but calculation of percentage incorrect, then award 1 mark;	2
	(ii)	(Mutant mice)	
		 Unable to make phosphocreatine/ less phosphate available to make/recycle ATP[.] 	
		 So less energy/so less ATP available for contraction/fast muscle fibres; 	
		1 and 2. Reject production/creation of energy once	
		2. Accept less energy for grip	
		2. Accept no energy/no ATP for contraction/fast muscle fibres	
			2
(c)	1.	(Heterozygous) have one dominant/normal	
	2.	. (This) leads to production of enough/normal amount of creatine;	
		1. Accept has one allele/one copy of the gene for/that is making creatine	
			2