Q1.

The diagram below shows the structure of molecules found in organisms.

(a) Complete the table below by putting the correct letter, **A**, **B**, **C** or **D**, in the box next to each statement. Each letter may be used once, more than once, or not at all.

Letter	Statement	
	is a monomer in an enzyme's active site	
	is a monomer in cellulose	
	is produced during photosynthesis and respiration	
	forms a polymer that gives a positive result with a biuret test	

(4)

- (b) Raffinose is a trisaccharide of three monosaccharides: galactose, glucose and fructose. The chemical formulae of these monosaccharides are:
 - galactose = C₆H₁₂O₆
 - glucose = $C_6H_{12}O_6$
 - fructose = $C_6H_{12}O_6$

Give the number of carbon atoms, hydrogen atoms and oxygen atoms in a molecule of raffinose.

Number of carbon atoms	
Number of hydrogen atoms	
Number of oxygen atoms	

(1)

(c)	A biochemical test for reducing sugar produces a negative result with raffinose solution.
	Describe a biochemical test to show that raffinose solution contains a non-reducing sugar.
	(Total 8 i
Γhe	diagram shows the structure of two α -glucose molecules.
	HOO H HOO H
a)	On the diagram, draw a box around one chemical group in each glucose molecule used to form a glycosidic bond.
b)	A precipitate is produced in a positive result for reducing sugar in a Benedict's test. A precipitate is solid matter suspended in solution.

е		Beaker A B Sults for b	red red eakers A and B in	Test 2 red dark red	
Э		Α	red	Test 2	
•	-			Test 2	
Э	ı	Beaker	Test 1		
Э			Г	,เ ๖ รบเนเเบท	
е	ı		Colour of solution		
	student's result	s are sho	wn in the table belo	ow.	1
alt	ose is hydrolyse	ed by mal	tase.		
; 3	and then	-	ution to test for red		or o minutes,
			naltase, heated the		or 5 minutes
	-		nical tests on a sar ution to test for redu		ant.
٦t	ained glucose s	olution. B	contained maltose oth solutions had t	he same concentra	ation.
ar	n investigation, a	a student	wanted to identify	the solutions in two	beakers, A

Beaker B

(Total 8 marks)

	colorimeter in this investigation would improve the repeatability of nt's results.
Give one	reason why.
t 1 , the s	tudent used a measuring cylinder to measure 15 cm³ of solution
beaker. he used aduated	tudent used a measuring cylinder to measure 15 cm ³ of solution The measuring cylinder gives a volume with an uncertainty of ±1 a graduated syringe to measure 5.0 cm ³ of Benedict's solution. syringe gives a volume with an uncertainty of ± 0.5 cm ³ . She lumes of liquid to do the biochemical test.
beaker. The used raduated these vo	The measuring cylinder gives a volume with an uncertainty of ± 1 a graduated syringe to measure 5.0 cm³ of Benedict's solution. syringe gives a volume with an uncertainty of ± 0.5 cm³. She lumes of liquid to do the biochemical test. the percentage error for the measurements used to obtain a 20 are of the solution from the beaker and Benedict's solution. Show
beaker. She used aduated these vo Calculate cm³ mixtu	The measuring cylinder gives a volume with an uncertainty of ± 1 a graduated syringe to measure 5.0 cm³ of Benedict's solution. syringe gives a volume with an uncertainty of ± 0.5 cm³. She lumes of liquid to do the biochemical test. the percentage error for the measurements used to obtain a 20 are of the solution from the beaker and Benedict's solution. Show
beaker. She used aduated these vo Calculate cm³ mixtu	The measuring cylinder gives a volume with an uncertainty of ± 1 a graduated syringe to measure 5.0 cm³ of Benedict's solution. syringe gives a volume with an uncertainty of ± 0.5 cm³. She lumes of liquid to do the biochemical test. the percentage error for the measurements used to obtain a 20 are of the solution from the beaker and Benedict's solution. Show

Q3.		
(a)	What is a monomer?	
(h)		(1)
(b)	Lactulose is a disaccharide formed from one molecule of galactose and one molecule of fructose.	
	Other than both being disaccharides, give one similarity and one difference between the structures of lactulose and lactose.	
	Similarity	
	·	
	Difference	
	·	
		(2)
Q4.		
(a)	Glycogen and cellulose are both carbohydrates. Describe two differences between the structure of a cellulose molecule and a glycogen molecule.	
	1	

1		
Tick (✓) the box that identifies the test which would be used to show the presence of starch. Acid hydrolysis test Benedict's test Emulsion test		
Tick (✓) the box that identifies the test which would be used to show the presence of starch. Acid hydrolysis test Benedict's test Emulsion test	1	
Tick (✓) the box that identifies the test which would be used to show the presence of starch. Acid hydrolysis test Benedict's test Emulsion test		
Tick (✓) the box that identifies the test which would be used to show the presence of starch. Acid hydrolysis test Benedict's test Emulsion test		
Acid hydrolysis test Benedict's test Emulsion test	2	
Acid hydrolysis test Benedict's test Emulsion test		
Acid hydrolysis test Benedict's test Emulsion test		
Benedict's test Emulsion test	Tick (√) the box that identifies presence of starch.	s the test which would be used to show the
Emulsion test	Acid hydrolysis test	
	Benedict's test	
lodine/potassium iodide test	Emulsion test	
	lodine/potassium iodide test	

2

In mammals, in the early stages of pregnancy, a developing embryo exchanges substances with its mother via cells in the lining of the uterus. At this stage, there is a high concentration of glycogen in cells lining the uterus.

Describe the structure of glycogen.
During early pregnancy, the glycogen in the cells lining the uterus is an important energy source for the embryo.
Suggest how glycogen acts as a source of energy.
Do not include transport across membranes in your answer.

O	6	
~	•	ı

(a)	Name the monomers from which a maltose molecule is made.	
/ b .\	Name the time of chamical hand that is include that the same	(1)
(b)	Name the type of chemical bond that joins the two monomers to form maltose.	

A student wanted to produce a dilution series of a maltose solution so he could plot a calibration curve. He had a stock solution of maltose of concentration 0.6 mol dm $^{-3}$ and distilled water. He made a series of dilutions from 0.1 to 0.6 mol dm $^{-3}$.

(c) Complete the table below by giving all headings, units and the concentration of the maltose solution produced.

Concentration of maltose solution	Volume of 0.6 mol dm ⁻³ maltose solution / cm ³	
<i>I</i>		/
	5	10

(2)

(1)

The student performed the Benedict's test on six maltose solutions ranging from 0.1 mol dm⁻³ to 0.6 mol dm⁻³. He placed a sample of each solution in a colorimeter and recorded the light absorbance.

His results are shown in the graph below.

(d)	Explain how you would use the graph to determine the maltose concentration with a light absorbance of 0.45 arbitrary units.	

(2)

(Total 6 marks)

Q7.

Starch and cellulose are two important plant polysaccharides.

The following diagram shows part of a starch molecule and part of a cellulose molecule.

- (a) Explain the difference in the structure of the starch molecule and the cellulose molecule shown in the diagram above.
- (b) Starch molecules and cellulose molecules have different functions in plant cells. Each molecule is adapted for its function.

explain one plant cells.	way in which	starch mole	ecules are a	dapted for their	r tunction ir

(2)

(2)

Explain how cellulose molecules are adapted for their function in plant cells.				
(Total 7 n	r			