(a)	Lysozyme is an enzyme consisting of a single polypeptide chain of 129 amino acids. What is the minimum number of nucleotide bases needed to code for this enzyme?								
	•••••								
(b)		diagram shows the thesise this enzyme.		of bases ir	a section	of the mR	NA strand	l used to	
		GGUCUL	J U C U	U A U	G G U	A G A	U A U		
	(i)	Give the DNA sequence section of mRNA.	uence whic	h would be	e complem	entary to t	he first fou	ır bases in	this
	(ii)	How many differen shown in the diagr		RNA mole	cule would	attach to	the sectior	of mRNA	
(c)	Give	e two factors which r	night increa	ase the fre	quency at	which a m	nutation in	DNA occu	rs.
	1								
	2								
(d)	mut	o single base mutatio ations caused an alto gram shows the origi	eration in th	ne sequen	ce of amin	o acids in	the enzym	RNA. Thes	se
	- 1	riginal amino acid equence	Gly	Leu	Ser	Tyr	Gly	Arg	Ту
		riginal mRNA ase sequence	GGU	CUU	UCU	UAU	GGU	AGA	UA
	- 1								
	b:	Itered amino acid equence	Gly	Leu	Tyr	Leu	Trp	Arg	Ту

(1)

(i) Use the mRNA codons provided in the table to complete the altered mRNA base sequence in the diagram.

Amino acid	mRNA codons which can be used
Arg	AGA
Gly	GGU
Leu	CUU or UUA
Ser	UCU
Trp	UGG
Tyr	UAU or UAC

(ii) Use the information provided to determine the precise nature of the **two** single base mutations in the DNA.

(3)
(Total 9 marks)

(4)

(ii) What is the role of RNA polymerase in transcription?

(1)

(iii) Name the organelle involved in translation.

Q2.

(b) Figure 1 shows some molecules involved in protein synthesis.

Figure 1

Translation

Transcription

Complete Figure 1 to show

- (i) the bases on the DNA strand from which the mRNA was transcribed;
- (ii) the bases forming the anticodons of the tRNA molecules.

Figure 2 shows the effects of two different mutations of the DNA on the base sequence of the mRNA. The table shows the mRNA codons for three amino acids.

Figure 2

Amino a cid	mRNA cod on
methionine	AUG
valine	GUC GUU
alanine	GCA GCC GCU

(c)	Name the type o	f mutation represent	ted by m	nutation 1
-----	-----------------	----------------------	----------	------------

identify amino acid X in Figure 1;

(d) Use the information in the table to

(i)

(1)

(1)

	(ii)	explain how each mutation may affect the polypeptide for which this section of DNA is part of the code.								
		Mutation 1								
				•••••						
				•••••						(2)
		Mutation 2								
										453
									(Tota	(2) al 10 marks)
	The b	lack mamba is a poisonous snake. It	ts pois	son co	ntains	a tox	in.			
The toxir		shows the base sequence of mRNA	that	codes	for th	e first	two a	mino	acids of this	S
Ва	ise se	quence of anticodon on tRNA								
Ва	ise se	quence of mRNA	Α	С	G	Α	U	G		
Ва	ise se	quence of DNA								
Con	nplete	the table to show		•	!			!	-	
(a)	(i)	the base sequence of the anticodor this mRNA sequence	n on t	he firs	t tRN	A mole	ecule 1	that w	ould bind to	0
		une iiii vu vaaquellee								(1)
	(ii)	the base sequence of the DNA from	m whi	ch this	s mRN	IA wa	s tran	scribe	ed.	(1)
(b)		ne length of the section of DNA that codes for the complete toxin is longer than the RNA used for translation. Explain why.								
										(1)

Q3.

	(c)	A mutation in the base sequence of the DNA that codes for the toxin would change the base sequence of the mRNA.	
		Explain how a change in the base sequence of the mRNA could lead to a change in the tertiary structure of the toxin.	
			(4)
	(d)	The black mamba's toxin kills prey by preventing their breathing. It does this by inhibiting the enzyme acetylcholinesterase at neuromuscular junctions. Explain how this prevents breathing.	(1)
		(Extra space)	
			(3)
		(Total 7 n	narks)
Q4.		The table shows the sequence of bases on part of the coding strand of DNA.	
		Base sequence on coding strand of DNA C G T T A C	
		Base sequence of mRNA	
	(a)	Complete the table to show the base sequence of the mRNA transcribed from this DNA strand.	(2)

(b)	A piece of mRNA is 660 nucleotides long but the DNA coding strand from which it was transcribed is 870 nucleotides long.							
	(i)	Explain this difference in the number of nucleotides.						
				(1				
	(ii)	What is the maximum number of amino piece of mRNA? Explain your answer.	o acids in the protein translated from th	nis				
		Number of amino acids						
		Explanation						
				(2				
(c)		nplete the table to give two differences becture of tRNA.	etween the structure of mRNA and the					
		mRNA	tRNA					
				(2				
			(Total 7 marks				

Q5. (a) The table shows the mRNA codons for some amino acids.

Codon	Amino acid
CUA	Leucine
GUC	Valine
ACG	Threonine
UGC	Cysteine
GCU	Alanine
AGU	Serine

	(i)	Give the DNA sequence coding for cysteine.	
			(1)
	(ii)	Name the amino acid coded by the tRNA anticodon UCA.	
			(1)
(b)		articular gene is 562 base-pairs long. However, the resulting mRNA is only 441 eotides long. Explain this difference.	
			(1)

(c) Tetracycline binds to bacterial ribosomes. This is shown in the diagram.

Protein synthesis in bacteria is similar to that in eukaryotic cells. Explain how tetracycline stops protein synthesis.

(2) (Total 5 marks)

Q6. S The diagram shows a single-celled organism called *Chlamydomonas*.

	mod	amydomonas lives in fresh-water ponds. It uses its flagella to swim towards light of lerate intensity but away from very bright light. Using information in the diagram, ain the advantage of this behaviour.
,		
	flage	hlamydomonas cell has two flagella. These flagella contain a single sort of protein. A ellum consists of a bundle of 242 filaments. Each filament consists of 7500 protein ecules. Each protein molecule contains 900 amino acid units.
((i)	What would be the minimum number of nucleotides in the coding region of the mRNA used to synthesise this protein?
((ii)	In an investigation, a culture of <i>Chlamydomonas</i> was treated in a way that caused them to lose their flagella without any other damage to the cells. The flagella grew back to their original length in 60 minutes.
		How many amino acid molecules would be incorporated into each growing flagellum per minute? Show your working.

- (c) The researchers investigated the rate at which the flagella grew in three different media.
 - 1. A medium containing actinomycin D, which prevents transcription by binding to the guanine in DNA
 - 2. A medium containing puromycin, which prevents translation by attaching to ribosomes
 - 3. A control medium

(i)

The results are shown in the graph.

Describe how the rate of growth was affected by puromycin.

	(ii)	Th	e researchers concluded	
		1.	that the cells used mRNA that is already present in the cytoplasm for the regrowth of the flagella;	
		2.	that some of the regrowth uses protein molecules already present in the cell.	
		Ex	plain the evidence for each of these conclusions.	
		1.		
		2 .		
		••••	(Total 11 r	(4) marks)
Q7.	(a)	Tab	le 1 shows some of the events which take place in protein synthesis.	
-	(ω)			\neg
		Α	tRNA molecules bring specific amino acids to the mRNA molecule	
		В	mRNA nucleotides join with exposed DNA bases and form a molecule of mRNA	
		С	The two strands of a DNA molecule separate	
		D	Peptide bonds form between the amino acids	
		E	The mRNA molecule leaves the nucleus	
		F	A ribosome attaches to the mRNA molecule	
			Table 1	
	(i)	Wr	ite the letters in the correct order to show the sequence of events during protein	
	(1)		nthesis, starting with the earliest.	
				(2)
	an)			(=)
	(ii)	In v	which part of a cell does C take place?	
		••••		(1)

	(iii)	Which o	of A - F are in	volved in transl	ation?			
(b)	Tab	le 2 show	s some mRN	IA codons and	the amino acids	or which the	ey code.	(1
			ml	RNA codon	Amino acid			
				GUU	Valine	-		
				CUU	Leucine	-		
				GCC	Alanine	-		
				AUU	Isoleucine	=		
				ACC	Threonine			
				Table 2		_		
	(ii)	molecule		equence that c	odes for threoning			(*
	,,						 (Total 6 r	(′ narks
	(a)	The table	shows the m	nRNA codons fo	or some amino ad	ids.		
			CUA	Leucine				
			GUC	Valine				
			ACG	Threonine				
			UGC	Cysteine				
			GCU	Alanine				

Give the DNA sequence for cysteine.

Serine

AGU

(i)

(1)

	(ii) Name the amino acid coded by the tRNA anticodon UCA.	
(b)	A particular gene is 652 base pairs long. The mRNA produced from this gene is only 44 nucleotides long. Explain this difference.	(1)
		(1)
(c)	Tetracycline is an antibiotic. The diagram shows how tetracycline binds to bacterial ribosomes. Ribosome Tetracycline Tetracycline	
	Protein synthesis in bacteria is similar to that in eukaryotic cells. Explain how tetracyclir stops protein synthesis in bacteria.	ne (2) al 5 marks)

Q9. The diagram shows part of a pre-mRNA molecule.

(i) Na	Name the two substances that make up part X .					
			and		mRNA has been	
	ve one way in ucture of a tR		ture of an mRNA r	molecule is differe	nt from the	
 (ii) Ex	plain the differ	rence between p	ore-mRNA and mR	 !NA.		
			ferent bases in tw			
The mol	ecules were t			ent parts of a chro		
The mol			the DNA in differe	ent parts of a chro		
The mol	ecules were t	ranscribed from	Percentage c	ent parts of a chro of base	mosome.	
The mol	ecules were t	ranscribed from	Percentage o	ent parts of a chro of base C	mosome.	
The mol P chro Middle End	Part of mosome	A 38 31	Percentage of G	of base C 24 26	U	
The mol P chro Middle End (ii) Co	Part of mosome	A 38 31 ble by writing the percentages of least continuous cont	Percentage of G 20 22	of base C 24 26 acil (U) in the appli	U ropriate boxes.	
P chro Middle End i) Co	Part of mosome mosome phase the talk plain why the e end part are	A 38 31 ble by writing the percentages of different.	Percentage of units of the DNA in different di	of base C 24 26 acil (U) in the application of the characteristics.	U ropriate boxes.	
The mol P chro Middle End (i) Co (ii) Ex	ecules were to the complete the tale plain why the e end part are	A 38 31 ble by writing the different.	Percentage of 20 22 e percentage of unabases from the mi	of base C 24 26 acil (U) in the appled ddle part of the ch	U ropriate boxes.	
The mol Pchro Middle End (i) Co	ecules were to the complete the tale plain why the e end part are	A 38 31 ble by writing the different.	Percentage of 20 22 e percentage of units bases from the mi	of base C 24 26 acil (U) in the appled ddle part of the ch	U ropriate boxes.	

(2)

(3)

Q10.	(a)	Figure 1 shows the exposed bases (anticodons) of two tRNA molecules involved in
	the s	synthesis of a protein.

Figure 1

Complete the boxes to show the sequence of bases found along the corresponding section of the coding DNA strand.

(b) Describe the role of tRNA in the process of translation.

(c) **Figure 2** shows the sequence of bases in a section of DNA coding for a polypeptide of seven amino acids.

Figure 2

TACAAGGTCGTCTTTGTCAAG

The polypeptide was hydrolysed. It contained four different amino acids. The number of each type obtained is shown in the table.

Amino acid	Number present
Phe	2
Met	1
Lys	1
Gln	3

Use the base sequence shown in **Figure 2** to work out the order of amino acids in the polypeptide. Write your answer in the table below.

Met				(2
			(ے) Total 7 marks)

Q11.		New alleles arise as a result of mutations in existing genes. These mutations may occur g DNA replication.	
	(a)	Explain what is meant by an allele.	
			(1)
	(b)	Explain how DNA replicates.	

(4)

	(c)	Explain why a mutation involving the deletion of a base may have a greater effect than one involving substitution of one base for another.	
			(3)
		(Total 8 mar	
Q12.		The diagram shows the life cycle of a fly.	
		Adult Egg	
		Pupa Larva	
	tissu subs	en the larva is fully grown, it changes into a pupa. The pupa does not feed. In the pupa, the less that made up the body of the larva are broken down. New adult tissues are formed from stances obtained from these broken-down tissues and from substances that were stored in body of the larva.	
	(a)	Hydrolysis and condensation are important in the formation of new adult proteins. Explain how.	
			(2)
	(b)	Most of the protein stored in the body of a fly larva is a protein called calliphorin. Explain why different adult proteins can be made using calliphorin.	
			(1)

The table shows the mean concentration of RNA in fly pupae at different ages.

Age of pupa as percentage of total time spent as a pupa	Mean concentration of RNA / µg per pupa
0	20
20	15
40	12
60	17
80	33
100	20

(c)	Des	cribe how the concentration of RNA changes during the time spent as a pupa.	
			(2)
(d)	(i)	Describe how you would expect the number of lysosomes in a pupa to change with the age of the pupa. Give a reason for your answer.	
			(2)
	(ii)	Suggest an explanation for the change in RNA concentration in the first 40% of the time spent as a pupa.	
			(2)

(e)	Suggest an explanation for the change in RNA concentration between 60 and 80% of the
	time spent as a pupa.

•••••	 	 	 	

- (f) The graph shows changes in the activity of two respiratory enzymes in a fly pupa.
 - Enzyme A catalyses a reaction in the Krebs cycle
 - Enzyme **B** catalyses the formation of lactate from pyruvate

	Dur 6 da	ring the first 6 days as a pupa, the tracheae break down. New tracheae are ays. Use this information to explain the change in activity of the two enzyme	ormed after s.
	(Ext	tra space)	
			(4)
			(Total 15 marks)
Q13.	(a)	The mRNA codon for the amino acid tyrosine is UAU.	
4.0.	(i)	Give the DNA triplet for tyrosine.	
	()		
	(::\	Ohre the (DNA anti-nelse feet) and	(1)
	(ii)	Give the tRNA anticodon for tyrosine.	
			(1)
(b)		e two ways in which the structure of a molecule of tRNA differs from the str lecule of mRNA.	ucture of a
	1		
	2		
			(2)
			(Total 4 marks)

WIT. INCAU LITE TOTOWITH DASSAU	Q14.	Read the following passage.
---------------------------------	------	-----------------------------

The sequence of bases in a molecule of DNA codes for proteins. Different sequences of bases code for different proteins. The genetic code, however, is degenerate. Although the base sequence AGT codes for serine, other sequences may also code for this same amino acid. There are four base sequences which code for the amino acid glycine. These are CCA, CCC, CCG and CCT. There are also four base sequences coding for the amino acid proline. These are GGA, GGC, GGG and GGT.

Pieces of DNA which have a sequence where the same base is repeated many times are called "slippery". When "slippery" DNA is copied during replication, errors may occur in copying. Individual bases may be copied more than once. This may give rise to differences in the 10 protein which is produced by the piece of DNA containing the errors.

Use information in the passage and your own knowledge to answer the following questions.

(a)	Diffe	erent sequences of bases code for different proteins (lines 1 – 2). Explain how.	
			(2)
(b)		base sequence AGT codes for serine (lines $2-3$). Give the mRNA codon transcribed this base sequence.	
			(2)
(c)	seq	cine-proline-proline is a series of amino acids found in a particular protein. Give the uence of DNA bases for these three amino acids which contains the longest "slippery" uence.	
			(2)
(d)	(i)	Explain how copying bases more than once may give rise to a difference in the protein (lines $9-10$).	
			(2)
	(ii)	At what stage in the cell cycle would these errors in copying DNA bases occur?	()
			(1)

(e)	Starting with mRNA in the nucleus of a cell, describe how a molecule of protein is synthesised.	
		(6)
		ره) (Total 15 marks)

Q15. The diagram shows part of the metabolic pathway involved in the clotting of blood in response to an injury.

Haemophilia is a condition in which blood fails to clot. This is usually because of a mutant allele of the gene for Factor VIII.

(a)	Explain how mutation could lead to faulty Factor VIII.	
		(2)
4. \		(2)
(b)	Use information in the diagram to explain how faulty Factor VIII causes haemophilia.	
		(2)
(c)	A boy had haemophilia caused by faulty Factor IX. When his blood was mixed with blood from a haemophiliac with faulty Factor VIII, the mixture clotted. Suggest an explanation for clotting of the mixture.	
	(Total 6 ma	(2) rks)

.	Qual	This question should be answered in continuous prose. lity of Written Communication will be assessed in the answer.	
	(i)	Starting with mRNA, describe how the process of translation leads to the production of a polypeptide.	
			(4)
	(ii)	Normal tomato plants have an enzyme that softens tomatoes as they ripen. Genetically engineered tomatoes ripen and soften more slowly. A gene was inserted which reduces the amount of softening enzyme produced.	
		The diagram shows matching parts of the base sequences for the mRNA produced by the gene for the softening enzyme and that produced by the inserted gene.	
		Softening gene mRNAAAUCGGAAU	
		Inserted gene mRNAUUAGCCUUA	
		Suggest how the inserted gene reduces the production of the softening enzyme.	
		(Total 6 mar	(2) ks)

Q16.

Q17. Figure 1 shows part of a gene that is being transcribed.

Figure 1

(c) Some breast tumours are stimulated to grow by oestrogen. Tamoxifen is used to treat these breast tumours. In the liver, tamoxifen is converted into an active substance called endoxifen. **Figure 2** shows a molecule of oestrogen and a molecule of endoxifen.

Figure 2

Q18.

Oestrogen	Endoxifen
Use Figure 2 to suggest how endo	xifen reduces the growth rate of these breast tumours.
	(2) (Total 6 marks)
(a) Name one mutagenic agent.	
	(1)

(b) In flax plants the flowers are white, lilac or blue. The diagram shows the pathway by which the flower cells produce coloured pigments.

	white blue	
(i)	A deletion mutation occurs in gene 1. Describe how a deletion mutation alters the structure of a gene.	
		(2)
(ii)	Describe and explain how the altered gene could result in flax plants with white-coloured flowers.	
		(4)

(iii) Electrophoresis was used to separate the enzymes involved in this pathway. When extracts of the differently coloured flax petals were analysed, four different patterns of bands were produced. In the table, only bands that contain functional enzymes are shown.

Result of electrophoresis	Colour of petal
	White

Complete the table to give the colour of the petal from which each extract was taken.

(2) (Total 9 marks)

Q19. (a) Complete the table to show the differences between DNA, mRNA and tRNA.

Type of nucleic acid	Hydrogen bonds present (√) or not present (★)	Number of polynucleotide strands in molecule
DNA		
mRNA		
tRNA		

(b) The diagram shows the bases on one strand of a piece of DNA.

(i) In the space below, give the sequence of bases on the pre-mRNA transcribed from this strand.

(2)

(ii) In the space below, give the sequence of bases on the mRNA produced by splicing this piece of pre-mRNA.

(1) (Total 5 marks)