1.	(a)	organic compounds of nitrogen / named example; converted to ammonium compounds / ammonia; by saprophytes / saprobionts / decomposers / equivalent; to nitrites; to nitrates; by nitrifying bacteria / named bacteria; uptake by roots;	max 6	
	(b)	(i) Nitrogen fixing bacteria / named e.g.; in root nodules (of legumes); convert nitrogen to ammonium / organic compounds (in legume); released on decomposition; and converted to nitrates; less need for fertiliser;	max 4	
		(ii) Shorter food chain / less trophic levels; will produce a greater yield of fish; less energy lost between stages / more energy from producers; (energy loss) in respiration / as heat; fish prevent algal blooms / equivalent;	max 3	[13]
2.	(a)	Release ammonia / ammonium / ammonification; <u>BY</u> Decomposers / putrefying / saprotrophic / ammonifying bacteria; ammonia → nitrite → nitrate / nitrification; <u>BY</u> nitrifying bacteria / named bacteria;	max. 3	
	(b)	(Interspecific) competition; for nitrates / nitrites / ammonia / ammonium compounds; [Process is stand alone - bacteria only credited if in correct context.]	2	[5]
3.	(a)	Mark for principle of placing quadrats at random; marks for detail - (method of) marking area out with grid/using tapes; acceptable <i>method</i> of generating random numbers; e.g. table/calculator;	3	
	(b)	Any one correct change; reason for diversity level; explanation of how heather affects diversity;	3	

	(c)	(i) (ii)	Award two marks for 0.5 g m ⁻² yr ⁻¹ ;; award one mark for answer without units or 2.4 – 2.5 %; Used for non photosynthesising/supporting organs; eaten by grouse;	2	
		(iii)	Younger plants have more shoots/provide more food; Younger plants provide more cover; Getting rid of old (unproductive) plants;	max. 2	
	(d)	(i) (ii)	proteins/nucleic acids/amino acids/ATP/nucleotides; ammonium/nitrate/nitrite;		
			NH_4^+ $NO_3^ NO_2^-$ [Formula must correspond if given]	1	
	(e)	by sa amm nitrit	nic material/proteins to ammonia/ammonium compounds; probiotic/putrefying bacteria; onia to nitrite; e to nitrate; trifying bacteria/named bacteria;	1 max. 4	
	(f)	In ol	der stands, greater proportion of/more nitrogen in plants; lost when burnt:	2	[20]
4.	(a)	Clas		2	

(b) (i) Enzymes are proteins; large molecules so not reabsorbed; are not used up in reactions (which they catalyse); enzymes are not themselves digested;

Lumbricus

(L.) terrestris;

max. 2

	(ii)	Add starch to worm casts; test for reducing sugars with Benedict's / test for disappearance of starch with iodine; need for control with boiled worm casts / soil;	3	
(c)	eartl mak OR	gicide also killing earthworms; nworms break leaves down into smaller pieces; ing more surface for microbial action; fungi / fungal decomposers killed;		
		decomposition of leaves;	max 2	
(d)	(i)	Nitrogen as inorganic ions/nitrate/ammonia / nitrite;	1	
	(ii)	Nitrogen in waste products of metabolism/urea/uric acid /ammonia; (ignore references to egestion)	1	
(e)	(i)	Any TWO from: Protein/amino acid/nucleic acid/ATP / urea;	1	
	(ii)	Decomposers/saprophytic/putrifying bacteria release ammonia; ammonia → (nitrite) → nitrate; (named) nitrifying bacteria / nitrification;	3	
(f)	(i)	Reduces surface area minimising water loss;	1	
	(ii)	Using food stores resulting in excretory nitrogen;	1	
(g)	fron	ition of nitrogen; n excretion / decay / enzymes; oval of carbon;		
	whe	n lost as carbon dioxide / during respiration;	max. 3	[20]
(a)	in pl	rgy losses due to radiation / evaporation / transpiration / notosynthesis / energy of wrong wavelength / some of		
		gy is heat; as: cancel	1	
(b)	2920);	1	

5.

(b) $(Ammonium) \rightarrow nitrite;$

Nitrite \rightarrow nitrate;

OR

Ammonium \rightarrow nitrate; (1 mark only)

If symbols: correct symbols

e.g. ammonium (nitrate $(NO_3) = NO MARKS$

By nitrifying bacteria / Nitrosomonas / Nitrobacter / nitrification;

By oxidation / using oxygen / aerobic;

3 max

[5]

6. Quality of language

The answer to this question requires continuous prose. Quality of language should be considered in crediting points in the mark scheme. In order to gain credit, answers must be expressed logically in clear scientific terms.

Any three from: (a)

Loss of habitat / nest sites / shelter / niche; ignore ,homes"

Loss of food:

Exposure of soil leads to erosion / leaching of ions;

Change in (micro)climate / levels of light / temperature / humidity;

Animals move away / higher death rate / extinction;

3 max

(b) Any three from:

Absorb carbon dioxide; (extra carbon-sources CANCEL)

In photosynthesis;

Carbon (dioxide) is used in forming permanent plant tissues /

biomass / plant structures;

Carbon is incorporated in organic molecules / named e.g.;

3 max

(c) (i) Any four from:

Less oxygen can enter the soil (from the air);

For saprobionts / soil microorganisms / bacteria / fungi /

decomposers / correctly named soil organisms;

For use in aerobic respiration;

Less breakdown of organic matter / humus / dead plants /

dead animals / other e.g.;

Less carbon dioxide released / formed;

4 max

(ii) Any five from:

Oxygen enters the soil / use of oxygen;

Nitrifying bacteria are aerobic;

Ammonia / ammonium ions \rightarrow nitrite;

Nitrite \rightarrow nitrate:

 $(Ammonia \rightarrow nitrate = 1 mark)$

(If formulae used, worth 1 mark only if correct)

Nitrate is absorbed / used by plants:

To make <u>named</u> organic-N – e.g. protein / amino acids / DNA /

ATP / NAD(P) / chlorophyll;

Increased yield / growth;

5 max

[15]

- 7. "Slash" / cutting down trees reduces photosynthesis; (a) Reduces removal of carbon dioxide from atmosphere; "Burn" combustion releases carbon dioxide;
 - "Slash" cutting down trees removes respiring organisms; OR Reduces removal of carbon dioxide into atmosphere; "Burn" / combustion releases carbon dioxide;

max 2

(Before clearing) soil exists / already produced; (b) (After clearing) recolonisation by new plants / seeds; (Brings about) change in environment / soil; (Allows) succession;

(Leading to) climax (community);

max 3

- (c) 1 Ammonium compounds from proteins / amino acids urea / N-containing;
 - 2 Converted into nitrite;
 - 3 Into nitrate; [Reject: Incorrect sequence once]
 - 4 By nitrifying bacteria / correctly named;
 - 5 Nitrogen-fixing bacteria;
 - 6 Fix nitrogen from atmosphere / air;
 - 7 Nitrate taken up by plants;
 - 8 Nitrogen needed for protein synthesis / plant growth;

max 6

		Maintain habitats / niches / shelter; Maintain diversity / avoid loss of species / protect endangered species. Maintain stability (of ecosystem); Maintain food chains / webs / supply of food; Reduced loss of soil / erosion; Reduced flooding; Act as carbon sink / maintainO2and CO2 balance reduce greenhouse effect Reduce global warming; Source of medicines; [Ignore: eutrophication] max 4				
8.	(a)	 (i) CO₂ combines with <u>RuBP</u>/with ribulose bisphosphate; (Product) splits in two/production of two molecules of GP/use of RubisCo; 	2			
		(ii) Amount formed = amount broken down/used/reference to Equilibrium;	1			
	(b)	Any three from: No ATP made (in dark); No reduced NADP / NADPH (in dark); [Note: NOT "NADH"] GP not converted (in dark); TP not formed (in dark);	max 3			
	(c)	(i) During day/light photosynthesis occurs; (Photosynthesis) uses/takes in CO ₂ ; [Accept: converse explanation during darkness]	2			
		(ii) Higher; Less light/cooler/fewer leaves/CO ₂ formed from soil organisms/decay in soil/respiration in soil;	2			
	(d)	Wind mixes air (with surrounding air)/removes CO ₂ /supplies CO ₂ ; Introduces another variable/makes data unreliable/takes account of wind;	2			
	(e)	Any three from: Detritivores/worms/woodlice/other e.g./decomposers/microorganisms/bacteria/fungi; Digestion/hydrolysis (of organic matter/of leaves)/decay/decomposition/rotting; Respiration;				
		<u>-</u>	max3	[15]		

(d)

Trees available as a sustainable resource;

9. (a) (i) Any **four** from:

- 1 Several/> 1 traps in each of the two habitats;
- 2 Place traps at random;
- 3 Details of method of achieving random layout/random coordinates generated e.g. tables/calculators; [Reject: "throwing"]
- 4 Named factor held constant e.g. same size traps/same length of time/same time of day;
- 5 Count number of insects of each kind/type/species/count number of kinds/ types/species present;
- 6 Calculate index of diversity (for forest and for field);

e.g.
$$\frac{d = N(N-1)}{\sum n(m-1)} = 1 \text{ mk} + \text{key to symbols} = 2 \text{ mks}$$
 max 4

(ii) Any **four** from:

In forest: Greater diversity of insects;

Greater number of <u>plant</u> species/higher diversity of <u>plants</u>; Greater number/variety of (ecological) niches/habitats;

Greater variety of food;

Less competition for resources/more food available;

Less harsh environment (abiotic) in forest; max 4

[Accept: converse for cultivated field]

(b) (i) Any **two** from:

Harvesting/crops are removed;

Less material available for decomposition;

Nitrates/ammonium/soluble compounds/ions leached;

Low initial N-content due to burning;

max 2

(ii) Any **five** from:

- 1 Nitrogen (gas) converted to NOx/nitrates;
- 2 By lightning/atmospheric nitrogen fixation;
- 3 Nitrogen (gas) converted to ammonia/ammonium compounds/amino acids;
- 4 By nitrogen-fixing bacteria;
- 5 Organic material/leaves from plants (fall onto soil)/animal droppings/dead animals;
- 6 Broken down by saprotrophs/decomposition;
- 7 Release of ammonia/ammonium ions (from organic matter/from decay);
- 8 Ammonia/ammonium converted to nitrite:
- 9 Nitrite converted to nitrate:

[Accept: Ammonium \rightarrow nitrate for 1 mark]

10 By nitrifying bacteria/correct named example;

max 5

[Note: Formulae, if used on their own, must be correct]

10. No - very little increase / no increase in yield of grass when *Rhizobium* (a) added / no difference between C and D;

1

Yes: increased yield with nitrates; (b)

> Correct reference to result in graph C c.f. graph A / use of correct numbers (from C + A)

e.g. greater yield of soyabean in C than in A /

greater yield of soyabean with nitrate than without if no *Rhizobium*;

2

(c) Forms mutualistic/symbiotic union with soyabean / forms root nodules / mutual benefits (/described):

makes ammonia/ammonium; (Nitrates – CANCEL)

Helps produce organic-N / amino acids / protein;

max 3

[6]

11. **Quality of Communication**

The answers to all sections of this question require the use of continuous prose. Quality of language should be considered in crediting points in the scheme. In order to gain credit, answers should be expressed logically and unambiguously, using scientific terminology where appropriate.

(Decomposers): Secretaion/release of enzymes; [REJECT ,excrete] (a)

Digest/hydrolyse organic matter;

Absorption / taken in " - by named process

e.g. diffusion/active transport; (ALLOW ,endocytosis)

Respiration

Release carbon dioxide;

Carbon dioxide used in photosynthesis;

Release ammonia/ammonium salts/ions/mineral salts/nutrients;

(ALLOW named small organic molecules)

Ammonia/ammonium to nitrate; (Nitrifying bacteria):

> Nitrate to nitrate; OR ammonia \rightarrow nitrate = 1mk

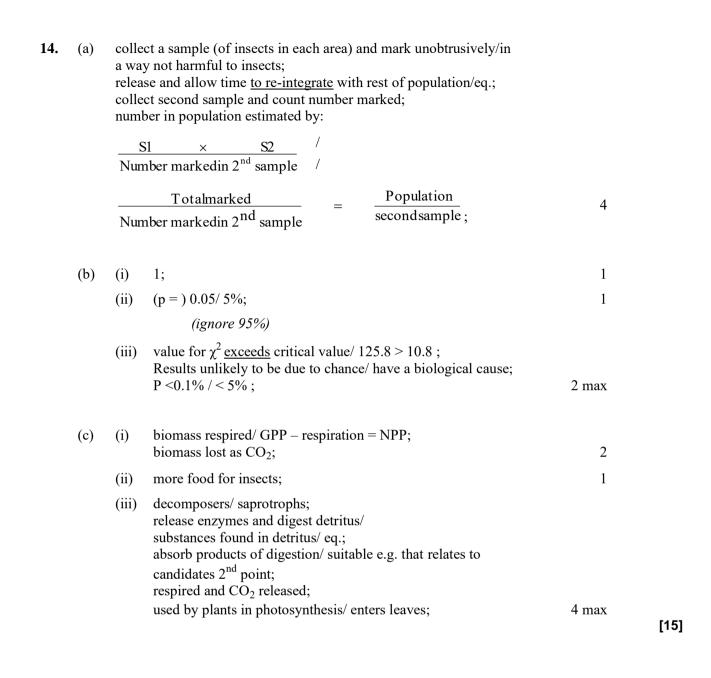
Aerobic/use of oxygen/by oxidation; [ALLOW correct symbols]

Nitrates/nitrites/ammonium used in synthesis of amino acids/protein /nucleic acids/other correct organic –N;

max 7

(Increase in carbon dioxide because) – (b)

Burning releases carbon dioxide; [IGNORE ref. to felling]


Less carbon dioxide removed by trees/less removed in photosynthesis;

2

(0	2. 3. 4. 5. 6. 7. 8. 9. 10. ld 11. li 12. ((13. ((13. ((14. (14.	Cleared areas light/tree seeds germinate/grow in light; Light for photosynthesis; Softwoods compete for light; Hardwoods can grow in low light; Additional seeds from close/adjacent areas; Less water evaporation (from hardwood seedlings) /maintains humididy Less extremes of temperature; /maintains microcl (canopy) reduces impact of rainfall (on hardwood seedlings)/ref. "tor roots stabilise soil / less soil erosion (by rainfall); ess leaching (of ions)(by rainfall); tter fall → recycling of ions (for hardwood seedlings); Trees) provide food for animals; Trees) provide habitats/niches/cover/shelter/nest sites for animals; Correct ref to succession / climax established;		[15]
12. (a	*	lenitrification; Nitrogen fixation;	2	
(t	by ac On n	nonia formed by decay/decomposition/putrefying/ammonifying/ etion of decomposers/saprobionts; itrogenous waste/urea <i>or</i> nitrogenous compounds (e.g. proteins, o acids, DNA, ATP);	2	
(0		gen added / hydrogen removed; re references to electron loss	1	[5]
13. (a	,	restation removes many habitats/niches r species/ fewer types of organisms; (do not credit just fewer organisms);	2	
(t	2. 3. 4. 5.	ammonium nitrate contains more nitrogen per molecule than potassium nitrate; nitrate ions in fertiliser available/ absorbed immediately; ammonium converted to nitrate; by nitrifying bacteria/Nitrosomonas and Nitrobacter; fertiliser would provide only the initial release of nitrate/ potassium nitrate;	3 max	[5]

2

2

P = 3;

 \mathbf{Q} = acetylcoenzyme A;

36 ATP, however derived = 2 marks

30 ATP, however derived = 1 mark

(i)

(ii)

15.

(a)

		(iii)	Correct statement in the context of aerobic respiration or anaerobic respiration concerning: Oxygen as terminal hydrogen/electron acceptor; Operation of electron transport chain/ oxidative phosphorylation; Fate of pyruvate; Krebs cycle; Significance of ATP formed in glycolysis;	max. 3	
	(b)	(i)	Thick walls exclude oxygen; Produced by photosynthetic cells (of fern and <i>Anabaena</i>); Contain no chlorophyll so do not photosynthesise; Do not produce oxygen; Oxygen would inhibit nitrogen fixation process;	max. 3	
		(ii)	Decomposers/ bacteria/fungi/saprobionts (in fields); Convert protein/organic nitrogen (in cells of fern) into ammonium ions (allow ammonia); Ammonium ions (ammonia) converted to nitrite; Nitrite converted to nitrate; Allow 1 mark for NH ₃ /NH ₄ ⁺ → NO3 ₃ ⁻ By nitrifying bacteria / correctly named; Nitrate used to form protein / amino acids in rice; Link between application of fern and protein/cells of rice; Decomposers respire (suitable substrate) and release CO ₂ ;	may 5	
			Used in photosynthesis by rice;	max. 5	[15]
16.	(a)	(i)	pyramid correctly drawn and labelled; ignore organic matter	1	
		(ii)	energy lost/not transferred <u>between trophic levels</u> ; in respiration /as heat / in excretory products / movement; ignore in urea / in faeces. "Growth" cancels 2 nd marking point only	2	
	(b)	(i)	decomposers convert (nitrogen in organic compounds) into ammonia/ammonium; suitable example of "organic nitrogen" - protein/urea/amino acid etc. (e.g. linked to process); nitrifying bacteria / correctly named convert ammonium to nitrate;		
			via nitrite;	3 max	
		(ii)	convert nitrogen (gas) into ammonium / ammonia / amino acids; add usable/available nitrogen to an ecosystem / eq.;	2	

	(c)	(1)	 numbers of dispersed bacteria increase as they <u>feed</u> on organic mate. numbers of free-swimming protoctistans increase because number of bacteria increase; dispersed bacteria decease as amount of dispersed organic matter decreases / due to lack of food / as organic matter is converted to decrease as are preyed on by free-swimming protoctistans; decrease in free-swimming protoctistans due to lack of dispersed bacteria; 		
		(ii)	 (in a succession) organisms (enter an area and) change the environment/conditions; creating new niches / habitats; allows different species / different types of organisms to enter / be successful; dispersed bacteria change dispersed organic matter to floes; presence of flocs allows crawling protoctistans to enter / to increas to be successful; 	e / 4 max	[15]
17.	(a)	(i)	Amino acid / protein / DNA / ATP;	1	
		(ii)	Dead animal / dead plant ;	1	
	(b)	(i)	Putrefying / saprobiotic / nitrifying bacteria / correct named bacteria;	1	
		(ii)	Denitrifying bacteria / correct named bacteria;	1	
	(c)	Some Some this r Inorg and t 435;	ks awarded for the two principles: e inorganic nitrogen is lost (to leaching, atmosphere, clover) e nitrogen in clover comes from fixation; may be shown by the correct calculation - ganic nitrogen (514) - nitrogen lost via leaching (13) and to atmosphere to clover $(110 - 96 = 14) / 514 - (13 + 52 + 14) / 514 - 79 = 435 \text{ kg/ha})$ rect working but incorrect answer or answer of 339 –1 mark)	2	
	(d)	clove	rer contain bacteria which can fix nitrogen; er decays/ dies and adds nitrogen compounds to soil; less fertiliser needed;	max. 2	[8]
18.	(a)	(i) (ii)	32.7; that all N not lost in urine and dung is converted into beef;	1	

	(b)	putrefying bacteria; convert nitrogen compounds into ammonium ions; nitrifying bacteria; convert ammonium into nitrate;	4	[6]
19.	(a)	eggs / larvae /weeds left in soil; lots of / plentiful supply of the same food source for pest; rapid growth/reproduction of pest/more pests; need to re-apply pesticides/use different pesticides / resistance to pesticides; hence lower yield / more of crop affected;	3 max	
	(b)	(i) resistant allele is recessive; parents must both be heterozygous/carriers; produce an offspring which is homozygous recessive; (accept these points if clearly shown in a genetic diagram) (accept mutation causes resistance to become dominant (in the gamete) for 1 mark)	3	
		(ii) bioaccumulation/biomagnification; higher dose to have the same effect / develop tolerance; kill natural enemies/predators of pest; kill (beneficial) organisms (not a predator) / named; hazard to user / enters water/food chain; residue left on crop;	2 max	[8]
20.	(i)	excessive use of fertilisers; run-off/leaching;	2 max	
	(ii)	 growth of algae/plants stimulated/increased; death of algae/plants; more bacteria/decomposers/decomposition; respiration; decomposers/bacteria remove oxygen; animals die (because of lack of oxygen); 	5 max	[7]
21.	(a)	(i) F ;	1	
		(11) K :	ı	

(b)	(i)	Conversion of nitrate to nitrogen; Use nitrate for respiration;		
	(ii)	Denitrifying bacteria found in anaerobic conditions; Sandy soils contain more oxygen;	2	
		$oldsymbol{Q}$ Accept converse argument for clay soils but answer must relate to denitrifying bacteria		
(c)	(i)	$253 \text{ (kg ha}^{-1})$	1	
	(ii)	Suggests that less fertiliser might be applied/parts above ground not required could be ploughed in;	1	[8]