M1.		(a) beating/pumping of heart / contraction of ventricles/heart;	1	
	(b)	(at arterial end) hydrostatic pressure/blood pressure; greater than pressure of water potential gradient /greater than osmotic uptake;		
	(c)	removed by lymphatic system / lymph; returned to blood;	2	
	(d)	less protein in blood;	2	
	(4)	water potential gradient is lower (less –ve/higher ψ).	2 [7]	
M2.		(a) exchange/diffusion across body surface/skin; short diffusion pathway/distance/large SA:V ratio;	2	
	(b)	large numbers of lamellae so large SA; lamellae thin so short (diffusion) pathway to blood/capillaries; high rate of oxygen uptake for respiration/energy release; (accept more oxygen)	3 [5]	I
М3.		(a) (i) arteriole;	1	
		(ii) any two oxygen/glucose/amino acids / fatty acids / glycerol / minerals;	1	
	(b)	small diameter/ lumen / small mean cross sectional area / increase in (total) cross sectional area; more surface in contact with blood; greater friction / resistance;		
		(causes) loss of pressure;	2 max	

	(c)	(i)	arte	ery;	1	
		(ii)	vol rec	etches/expands to accommodate increase in blood lume / when ventricle contracts/ increase in blood pressure; coils when blood volume decreases / when ventricle axes / blood pressure decreases;	2	[7]
M4.		(a)	(i)	Removes water vapour/moisture/saturated air;		
			2.	Increases water potential gradient/more diffusion/more evaporation;	2	
		(ii)	1.	Increases kinetic energy;		
			2.	Water molecules move faster;		
			3.	Increases diffusion/evaporation;	2 max	
	(b)	(i)		sitive correlation/as light intensity increases so does e of water movement/follows same pattern/directly proportional;	1	
		(ii)	1.	Stomata open;		
			2.	Photosynthesis increases/transpiration increases;		
			3.	More water pulled up;		
			4.	Cohesion between water molecules/by cohesion tension;	2 max	
		(iii)	1.	Water pulled up trunk/moves up at fast rate;		
			2.	(Water column under) tension;		
			3.	Sticking/adhesion (between water and) cells/walls/xylem; Adhesion is not a specification requirement. Accept cohesion in this context		
			4.	Pulls xylem in;	2 max	

(c) Elastic tissue

- 1 Elastic tissue stretches under pressure/when heart beats;
- 2 Recoils/springs back;
- 3 Evens out pressure/flow;

Do not allow credit for expands/contracts/relaxes in this context. From a marking viewpoint ignore all specific references to arteries and arterioles. Consider all points as applying to both.

3 Do accept controls

Muscle

- 4 Muscle contracts;
- 5 Reduces diameter of lumen/vasoconstriction/constricts vessel;
- 6 Changes flow/pressure;
 - 4-6 Accept converse

Epithelium

- 7 Epithelium smooth;
- 8 Reduces friction/blood clots/less resistance;

6 max

[15]

M5. (a) (diffusion) gradient will be maintained all the way along the gill / the amount of oxygen in the water is always higher than in the blood / the numbers in the water are always higher than in the blood; more oxygen will diffuse into the blood;

2

(b) (i) 100 cycles per minute;

(principle of 60/x or 0.6 seen gains one mark)

2

(ii) shuts mouth; raises the floor of the mouth cavity; decreases volume in the mouth cavity;

2 max

(iii) the fish has lowered the floor of its mouth cavity; (therefore) the pressure in the mouth falls below that of the opercular cavity; OR the fish has closed the flap covering the opercular cavity; (therefore) the pressure in the opercular cavity increases above that of the mouth cavity; 2 [8] M6. Caused by blood leaving the heart/entering artery; As a result of ventricles contracting/systole; 2 (b) Stretch as pressure increases; Recoil/spring back as pressure drops; Do not accept contract and relax in this context. Allow 1 mark for 'stretch and recoil' without reference to pressure. 2 Both have an endothelium/epithelium/squamous cells; (c) 1 [5] M7. (gills have) lamellae on filaments; lots of both; 2 (i) (b) all 3 go up; Accept converse 1 (ii) more oxygen can be supplied; for more respiration; Accept answer relating to CO, 2 [5] Endothelium/epithelium; M8. (a)

> Allow endothelial/epithelial Reject: epidermis/endodermis

1

Measurement divided by 8; (b) 1 Allow answer in range of 3-3.3 for two marks; Correct answer gains 2 marks. 1 (c) (i) Stretches/'expands' under high pressure/when ventricle contracts/systole; Recoils/'springs back' under low pressure/when ventricle relaxes/diastole; **Q** References to aorta contracting or relaxing negates marks for stretch and recoil. Smooths blood flow/maintains blood pressure/reduces pressure surges; Stretch and recoil without reference to blood pressure etc. = one mark. Stretch and recoil to smooth blood flow etc. = two marks Ignore references to aorta withstanding blood pressure or not being damaged. 2 max (ii) (Muscle) contracts; 'It' in answer = muscle 1 (Arteriole) constricts/narrows/alters size of lumen/reduces/regulates blood flow (to capillaries); Allow converse (muscle) relaxes and (arteriole) dilates etc/increase blood flow etc. Ignore references to pressure 1 (d) (i) Large/increase in (total) cross sectional area/friction/resistance; 1 (ii) (More) time for exchange of substances; 1 [9] M9. made of (different) tissues/specified tissues; (a) 1 (b) (i) 20 µm as it consists of endothelium only/does not contain muscle, connective tissues and elastic tissue; (consider other answers and credit understanding.) 1

(ii) 1 mark calculation derived from diameter - (2 × wall thickness)/ answer of 3mm;

2 marks 2mm/2000µm;

stretches as a result of high pressure/surge of blood; then recoils;

[6]

2

2

M10. (a) lymph;

 arrow drawn from right to left . no mark (if wrong direction disqualify) correct reference to blood entering capillary having higher hydrostatic pressure;

1

1

(c) HP forces water out; idea that HP is "higher" than WP; proteins remain in blood (increases WP); idea that WP is now "higher" than HP; water returns by osmosis / along WP gradient; water moves out at arteriole end and back in (at venule end);

4 max

3

(d) high respiration rate means high demand for oxygen;
 shrew <u>haemoglobin</u> has lower affinity for oxygen / gives up O² more readily;

shrew Hb lower saturation rate than human Hb at same partial pressure / more O^2 released at same pp;

[9]

M11. (a) (explanation must be linked to structures to gain second mark for each linked pair)

filaments/lamellae;	large SA;
gill plates or secondary	
lamellae;	
large number of capillaries;	to remove oxygen / to maintain a gradient;
thin epithelium;	short diffusion pathway;
pressure changes;	to bring in more water / to maintain gradient;
countercurrent flow (or	exchange/diffusion along whole length /
description);	concentration gradient maintained /
	equilibrium not achieved / blood always
	meets water with higher oxygen
	concentration;

6

(i) requires 20 cm³ of oxygen / extracts 7.2 cm³ of oxygen (b) reject if referring to volume of water

 $/\frac{20}{7.2}$;

 $2.7/2.8 (dm^3h^{-1});$

(correct answer award 2 marks)

2

(ii) high (relative) density/heavy; requires large input of energy; difficult to push back out;

2 max

(c) (for each pair second point must be linked to first) to provide same amount of oxygen; need to have more water flowing over gills; OR

metabolic rate/respiration increases (with increase in temperature);

so more oxygen required;

2 max

[12] **QWC 1**

M12. The muscle in the wall/sphincter contracts; (a)

Accept converse

Reducing blood flow/narrowing/closing arteriole;

The muscle to which the candidate is referring must be clearly in the wall of the arteriole.

2

(b) (i) Blood flow increased in humans/reduced in seals;

1

(ii) Less oxygen/blood taken to muscles;

None is incorrect

(More) oxygen available for organs/brain; Can stay under water longer (without breathing);

max 2

[5]

M13.	•	(a)	(i) <u>one</u> feature; then linked Explanation;		
			(many) filaments / lamellae / secondary lamellae; so large surface area;		
			large number of capillaries; (NOT "good blood supply") maintains a diffusion gradient / removes oxygen;		
			thin epithelium / lamellae wall; short diffusion pathway;	2	
				-	
		(ii)	maintains diffusion / concentration gradient / equilibrium not reached;		
			diffusion occurs across whole length (of lamellae / gill);	2	
	(b)	this of the line o	closes mouth <u>and</u> raises the floor of the mouth; decreases the volume / increases the pressure (of mouth); eased volume / decreased pressure of opercular cavity; er forced over the gills;		
		oper	culum / opercular valve opens;	3 max	
	(-)		an arm un and ad / a anti-rusus flavoration at OO.		
	(c)	iess	energy needed / continuous flow of water or O2;	1	
					[8]
M14.	•	(a)	Small surface area to volume ratio;		
		LUSE	es less heat (to the water);	2	
	(b)	(i)	Diffusion through cell/body surface;		
	(~)	(-)	Q The key term here is diffusion		
				1	
		(ii)	Small organisms have large surface area to volume ratio;		
			Rate of diffusion depends on surface area; All parts of cell only a short distance from exchange surface;		
			, ,	2 max	
	(c)	Surf	ace area of leaves;		
	(0)		erent shoots will have leaves with different surface areas;	_	
				2	
	(d)		w line/curve of best fit/from line/curve of best fit;		
		rina	I slope/gradient/divide distance moved by time;	2	

	(e)	2 Th 3 Di 4 Tr 5 Ox 6 Ve 7 Bo	r enters through (open) spiracles; hrough tracheae; ffusion gradient in trachea acheae associated with all cells/closely associated with cells; kygen diffuses into cells; entilation replacing air in tracheae; body covered with (waterproof) waxy layer/cuticle; biracles are able to close;	6 max	[15]
					[15]
M15.		(a)	Made up of different tissues/more than one tissue; Q Made up of tissues implies more than one so allow. Ignore references to function		
	(b)	Deo	xygenated/less pressure; Q Unqualified pronouns in the context of this question refer to pulmonary artery	1	
	(c)	Grea Do r	ck muscular walls; ater elastic content; not have valves; all/narrow lumen; QWC Unqualified pronouns in the context of this question refer to artery	2 max	
	(d)	(i)	Decreases with increased distance from the heart;	1	
		(ii)	Friction /resistance to flow;	1	[6]
M16.		(a)	(Blood) plasma;	1	
	(b)		e/larger proteins/less urea/carbon dioxide/more glucose/amino s/fatty acids/oxygen/high(hydrostatic) pressure; Q Reference to blood cells/water potential = neutral Q No Protein should not be credited	1	

	(c)	(i)	Contracts; Q Do not accept pumping of heart/heart beating	1	
		(ii)	Loss of fluid/volume; Friction/resistance (of capillary wall); • **Q Reference to a narrow lumen is not sufficient to gain a mark unless friction or resistance is mentioned.**	1 max	
	(d)		er potential (in capillary) not as low/is higher/less negative/water ntial gradient is reduced;		
		More	e tissue fluid formed (at arteriole end);		
		Less	s/no <u>water</u> absorbed (into blood capillary);		
		by <u>o</u>	smosis; (into blood capillary); Q The last two marking points must be in context of movement into the blood capillary	3 max	[7]
M17.		(a)	Filaments/lamellae provide large surface area;		
			/flattened epithelium/one/two cell layers so short diffusion way (between water and blood);		
		Cou	ntercurrent/blood flow maintains concentration/diffusion gradient; Q Do not credit thin cell walls/membranes	2 max	
	(b)	(i)	Large/wide range of values (so can fit on graph);	1	
		(ii)	Decrease in uptake with increase in mass/negative correlation;	1	

Enables comparison;

As animals differ in size/mass;

(iii)

2

(iv) Smaller animals have larger surface area to volume ratio;

Allow converse for larger animals.

Allow appropriately named animal as an alternative to smaller or larger animals.

Lose more heat per gram of tissue;

Respire more/faster (relative to body mass);

Oxygen used in respiration;

3 max

[9]

M18. (a) Arrows on all five vessels in correct direction;

1

(b) (i) D;

1

(ii) E;

1

(c)

Feature	Vessel C	Vessel E
Valves	Absent	Present
(Relative) thickness of walls	Thicker	Thinner
Elastin/elastic tissue/fibres	More	Less
Muscle	More	Less
Lumen	Narrow	Wide

Two marks for two correct rows

Accept any pair of contrasting terms with same meaning as those used.

2 max

(d) Contracts;

(Causing) vasoconstriction/narrows lumen;

2

(e) (Elastic tissue) stretches when pressure is high;

Springs back/recoils/returns to normal;

Q Do not credit references to contracting, relaxing or expanding

2 max

[9]