PMT

1.	(a)		e surface area: volume ratio; requirements by diffusion (over body surface);	2	
	(b)		ntains a concentration gradient; wing diffusion of oxygen) across width of gill;	2	
	(c)	 (c) Large surface area for diffusion / O₂ uptake / gaseous exchange; short diffusion path; highly vascularised / many blood capillaries for O₂ transport; 			
	(d)	highe ψ gra	exchange surfaces are permeable (to small molecules); er concentration of water molecules inside animal than out / adient; r will diffuse outwards / evaporation;	max 2	
	(e)	(i)	6.53 / 6.25 / 6.5; (2.61 × 2.5)		
		(ii)	0.28 / 0.275 / 0.3; (0.11 × 2.5) Both answers correct – 2 marks error in calculation but clearly shows answer obtained by multiplying figures – 1 mark	2	
	(f)		HER rence to spiracles; s exposure of respiratory surface / can close spiracles;		
		OR			
			en spiracles / hair round spiracles; ping moist air;		
		OR			
			ea cuticle lined; lose water through tracheoles;		
		OR			
			ea / tracheoles inside; ing exposure of respiratory surface;	max 4	

	(g)	(i)	Partial pressure on oxygen in muscle falls more; high / more carbon dioxide produced; lowers PH; increase in temperature; percentage saturation of Hb falls / lowers affinity / increase dissociation; displaces curve to right / results in Bohr shift;	max 4	
		(ii)	In absence of oxygen / low partial pressure of oxygen in tissues / oxygen still used in respiration; haemoglobin acts as an oxygen store; releases (large amount of) oxygen when low level in tissues;	max 2	[20]
2.	(a)	Prev	y cuticle; ents passage/evaporation of water;		
			s on surface (allow description); st air trapped/reduces water potential gradient;		
		OR			
			ten "openings"; st air trapped/reduces water potential gradient;		
		OR			
			nata/spiracles can close; aces evaporation;	max 4	
	(b)	Ther	on dioxide in tracheae; efore spiracles open; ving water vapour to escape;	3	[7]
3.	more Whe	e readil ere O ₂ i	aygen more readily (in lungs) / greater affinity / idea of ly saturated; s low; e of loading / unloading '.	2	[2]
4.	(a)	(Oxy Desc	arate description of ventilation by water flow; ygen) removal by bloodstream; pription of / countercurrent flow of blood and water (at gills); pt labelled diagram, ignore 'contraflow', reject 'multiplier'.	2	

PMT

	(b)	(Tota	al) time when oxygen (concentration) was increasing / gen diffusing in;	1	
			<i>OR</i> al) time when carbon dioxide (concentration) was decreasing / on dioxide diffusing out;	1 max	[4]
5.	(a)	То о	e work done / more energy / ATP required; vercome greater buoyancy; <i>x for idea of buoyancy, not term</i> .	2	
	(b)	(i)	Retains oxygen until the partial pressure is low / myoglobin has high affinity for oxygen; Partial pressure of oxygen late in dive low; Gives up oxygen (readily) at low partial pressures;	2 max	
		(ii)	Remains under water for long time; Unable to breathe while under water; Greater amount of myoglobin can release / provide more oxygen; More myoglobin, the darker the muscle;	3 max	
	(c)	(i)	0.267 hours or 16 minutes;; Error, but 30 00 cm ³ divided by $250 = 1$ mark	2	
		(ii)	Heart rate slows; Less blood flowing to / from muscles / liver / gut / blood flow to body other than brain reduced by 90%; Large volume of blood <u>compared with body mass;</u> Greater <u>concentration</u> of haemoglobin; Less blood required to supply heart / to heart muscle; <i>Reject imprecise answers relating to 'organs' / 'the body'</i> .	2 max	
	(d)	Less	blood to muscles / heart muscle / skin;	1	[12]
6.	(a)	(i) (ii)	Many, small/ branching tracheoles; Blood not involved in transport of respiratory gases in insects;	1 1	

	(b) (c)		2 1 [5]		
7.	(a)	(gills have) lamellae on filaments; lots of both;	2		
	(b)	(i) all 3 go up; [Accept converse]	1		
		 (ii) more oxygen can be supplied; for more respiration; [Accept answer relating to CO₂] 	2 [5]		
8.	(a)	It is a measure of the concentration of a gas (in a mixture of gases or a liquid);	1		
	(b)	-			
	(c)	muscle contraction causes increased respiration; increased CO ₂ production lowering blood pH; lactate released lowering blood pH; increased heat released therefore increased temperature; increased O ₂ consumption lowering tissue PO ₂ ; max 4			
	(d)	haemoglobin has a lower affinity for oxygen;more O_2 ;for respiration;max	2		

	(e)	3.4 times = 2 marks (incorrect answer in which candidate shows amount of oxygen removed at rest is 4.6 and amount removed during exercise is 15.8 = 1 mark)	2	
	(f)	Nearly all O ₂ is transported by haemoglobin / v. little transported in plasma; EITHER Haemoglobin is (nearly) fully saturated with O ₂ at the alveoli both at rest and when exercising; Therefore no (very little) further increase is possible; OR Haemoglobin is only 95% saturated with oxygen at the alveoli; Therefore enriching inspired /air with oxygen will raise this to 100%;	3	
	(g)	increased depth / rate / pulmonary ventilation; increase stroke volume/heart rate/Q increases blood flow rate; arterioles [<i>Accept</i> artery] supplying the muscles dilate / vasodilation / greater proportion of blood flow to the muscles;	max 3	[15]
9.	(a)	$\frac{10}{20} \times \text{measurment} / \frac{1}{2} \times \text{measurement};$ = 1.25 to 1.5; allow 1 mark if correct working shown	max 2	
	(b)	<u>Maintains</u> concentration gradient (over whole length of gill) / diffusion can occur over whole gill; <u>More</u> oxygen enters blood (/ <u>more</u> CO ₂ leaves); <u>More</u> (aerobic) respiration / <u>more</u> energy release in muscle / for swimming; <i>'more' needed ONCE only</i>	3	[5]
10.	(a)	increasing carbon dioxide concentration / partial pressure; (decrease in oxygen negates)	1	
	(b)	(oxygen is used in) respiration; therefore diffuses (from tracheae) to tissues; oxygen unable to enter organism;	2 max	
	(c)	spiracles not open all the time; therefore there is less water loss (by diffusion through spiracles);	2	[5]

PMT

11.	(a)	(i)	high/higher CO ₂ concentration / lack of oxygen;	1	
		(ii)	CO ₂ asphyxiates / is toxic; lack of oxygen for (aerobic) respiration; lack of energy / ATP (for pumping movements); reduced <u>muscle</u> function / muscle fatigue	2 max	
	(b)		val of (excess) CO_2 / oxygen to break down lactate / to repay oxygen to enable aerobic respiration;	1	[4]
12.	(a)	due te water	onditions - stomata partially closed; o less turgor in guard cells; OR red conditions - stomata more open; o greater turgor in guard cells; <i>IER</i>	2	
	(b)	(i)	temperature [Allow heat] - higher causes <u>more</u> water <u>evaporation</u> / diffusion [not just transpiration] OR light - causes stomatal opening OR soil texture - determines availability of water OR humidity - reduces evaporation / reduces gradient / wind causes <u>more</u> (water) evaporation;	1	
		(ii)	high CO ₂ gives less variation AND watering gives less variation; OR insignificant difference in variability as small differences in SD; <i>reject 'no difference'</i>	1	[4]
13.	(a)	(i)	oxygen concentration in air / water constant / surface area / thickness of skin constant;	1	
		(ii)	skin more important in winter and lungs in summer;	1	
	(b)	(i)	(winter) – low temp – skin takes up more oxygen; (summer) – higher temp – lungs takes up more oxygen;	2	
		(ii)	skin is more important in winter and summer / all the time / at all temperatures;	1	

	(c)	(i)	(thin) – short diffusion pathway; (hairs) – greater surface area for exchange;	2			
		(ii)	provides more (oxygenated) water over surface / maintains the concentration gradient;	1	[8]		
14.	(a)	1	Large surface area provided by lamellae/filaments;				
			$oldsymbol{Q}$ Candidates are required to refer to lamellae or filaments. D not penalise for confusion between two	00			
		2	Increases diffusion/makes diffusion efficient;				
		3	Thin epithelium/distance between water and blood;				
		4	Water and blood flow in opposite directions/countercurrent;				
		5	(Point 4) maintains concentration gradient (along gill)/equilibrium not reached;				
			5 Not enough to say gives steep concentration gradient				
		6	As water always next to blood with lower concentration of oxygen;				
		7	Circulation replaces blood saturated with oxygen;				
		8	Ventilation replaces water (as oxygen removed);	6 max			
			6-8 Accept answers relating to carbon dioxide				
	(b)	Mixi	ng of air and water (at surface);				
		Air has higher concentration of oxygen than water;					
		Diffi	usion into water;				
		Plant	ts/seaweeds near surface/in light;				
		Prod	uce oxygen by photosynthesis;	2 max			
	(c)	Not 1	much oxygen near sea bed;				
			fish haemoglobin (nearly) saturated/loads readily at /has higher ity for oxygen at low <u>partial pressure</u> (of oxygen);	2			
	(d)	(i)	The chimpanzee and the bonobo are more closely related (than to the gorilla);				
			They have identical amino acids/one of the amino acids is different in the gorilla;	2			

(ii) (Chimpanzee) orang-utan;
 Amino acids different so bases different;
 Few hydrogen bonds;

3

[15]