PMT

1. (a) Meiosis I

2.

	23			23		
meiosis II						
23		23	23		23;	1

(b) Random assortment of chromosomes/correct description;
 crossing over/chiasma formation/correct description;
 by reducing chromosome number it makes possible random fertilisation; max. 2

- (c) Causes variation in phenotype/characteristics of organisms/some better adapted/have more favourable characteristics; correct reference to (natural) selection of better adapted organisms; selection of different phenotypes in different environments; eventually leads to species change/change in gene pool/change in gene frequencies; max. 2
- (a) 1. Chromosomes shorten/thicken/condense;
 2. Chromosomes associate in homologous/(described) pairs /
 - formation of bivalents / tetrads;
 - 3. Crossing-over / chiasma formation;
 - 4. Join to <u>spindle</u> (fibres) / moved by <u>spindle</u>;(*)
 - 5. (At) equator/middle of cell;(*)
 - 6. (join via) centromere / kinetochore;(*)
 - (Homologous) chromosomes move to opposite poles / chromosomes separate/move apart; (*ALLOW*, are pulled apart^{*})
 - 8. (Pairs of) chromatids separated in 2^{nd} division;
 - (*) OR "independent assortment"
 - unqualified = 1 mark
 - (b) 1. Crossing-over; [*IGNORE* any wrong ref. to timing]
 - 2. Independent/random assortment/orientation/segregation of (homologous) chromosomes in meiosis I;
 - 3. Independent/random assortment/orientation/segregation of chromatids in meiosis II;
 - + <u>Any three from:</u>
 - 4. Different adaptations / some better adapted;
 - 5. Some survive / example described;
 - 6. To reproduce;
 - 7. Pass on gene/allele;
 - 8. Allows for changing environment/different environment/example described;

[5]

max 6

max 5

(c)	(i)	21;	1
	(ii)	 <i>T. aestivum</i> has 2 copies of each type of chromosome/is diploid; <i>T. aestivum</i> 's chromosomes can form bivalents/can assort in meiosis/ can produce haploid gametes; <i>T. aestivum</i> 's gametes receive a copy of <u>every</u> chromosome/ receive <u>all</u> the genetic information; [ACCEPT converse argument for hybrid plants] 	3 [15]

3. (a) Later fertilisation/cell fusion; (NOT just ,sexual reproduction') Restoring diploid/original number/not doubling chromosome number; 2 [ALLOW ref , $\frac{1}{2} + \frac{1}{2}$ "]

(b) Any three pairs from: need comparison of meiosis and mitosis each time

Meiosis	Mitosis
(Homologous) chromosomes associate in pairs	(Homologues) independent/do not pair (IGNORE ref. separation
Crossing-over/chiasmata formation	No crossing-over;
Two/(nuclear stages) divisions/ \rightarrow 4 offspring cells	One/(nuclear stage) division/ \rightarrow 2 offspring cells;
Genetically different (product)	Genetically identical (product);

[IGNORE refs. To location]

4. (a) (i) Continuous variation – range of values/not discrete categories/ many categories/no gaps; 1
(ii) Crossing over / chiasmata; Random segregation / independent assortment; In meiosis I and meiosis II; max 2 [5]

max 3

		(b)	Range influenced by single ,outlier" (<i>accept anomaly</i>) / converse for S.D.; S.D. shows dispersion/spread about mean; Range only shows highest and lowest values/extremes; S.D. allows statistical use; Tests whether or not differences are significant;	max 2	[5]
5.	(a)	First chron	meiotic division (A) will show cells with nosomes appearing as double structures/two chromatids still joined/ nosomes in A and chromatids in B /homologous pairs are separating;		
		Dialo	Must be in context of anaphase	2	
		Dipid	Allow reverse argument for second meiotic division If answer is unqualified, assume that it refers to cells at A, since this is the logic of the question.	Z S	
	(b)	Cross Rand chron And 1	sing over / chromatids exchange sequences of DNA / chiasmata; om/independent segregation/assortment (of chromosomes) / nosomes from homologous pairs move independently at meiosis I; meiosis II;	max 2	[4]
6.	(a)	(i)	Selecting the nettle plant: Random number table avoids bias in placing of quadrat; "Nearest centre" avoids bias in choosing plant to measure; 1 mark for "method avoids bias"	2	
		(ii)	<i>Measuring the sixth leaf:</i> To allow valid comparison/so as not to introduce another variable; Reduces/avoids influence of growth/age; Reduces/avoids influence of light/shading;	max. 2	
	(b)	(i)	Definition of range + SD / effect of outliers on range + SD; Ranges are similar in both areas; Suggests that variation within populations is similar; SD smaller in area of high light intensity; Shows that area of high light intensity is a more uniform population;	4	
		(ii)	Standard error (of the mean);	1	

PMT

	(c)	1.164 / 1.16 / 1.2, however derived = 2 marks 0.83 - 0.86 / 1.1, however derived = 1 mark	2	
		Evidence of correct use of both sets of figures, but inappropriate answer $= 1$ mark		[11]
7.	(a)	polygenic inheritance / several genes; many categories / continuous range / single or multiple allele inheritance would produce discrete categories / eq.;	2	
	(b)	(SE gives idea of) variability of mean; time / population mean would lie within these limits in 68% / 70% / 2/3 of samples;	2	[4]
8.	(a)	greater prospect for selecting egg mass using values from table; genetic influence is much higher / lower influence of environment;	2	
	(b)	(i) position of a gene / allele on a chromosome;	1	
		(ii) 87.5%;	1	
		(iii) pairing together of (deleterious) recessive alleles;	1	[5]
9.	(a)	(i) continuous	1	
		(ii) caused by more than one gene	1	
	(b)	Sicco is shorter than Spelt; greater range of height in Spelt	2	[4]
10.	(a)	continuous variation; suggests many genes involved / polygenic inheritance;	2	

	(b)	identical twins have same genotype; compare data from identical and non-identical twins / identical twins who have been separated; if genetic, - greater similarity between identical twins; large sample required / use a statistical test;	max 3	[5]
11.	(a)	(i) 1.00; because they have the same genes;	2	
		(ii) dizygotic twins share an average of 50% of their genes; only an average, therefore may be higher or lower than this;	2	
	(b)	(i) Yes because MZ have high concordance; DZ lower concordance;	1	
		 (ii) intra-uterine environment may be different for the two twins; further qualification, e.g. one may receive more nutrients 	2	[7]
12.	(a)	continuous;	1	
	(b)	(i) difference in mean of parents/significant difference in length of parents mean cob length of F_1 generation halfway between parental lengths; more variation in F_2 than F_1 ;	s; 2	
		 (ii) variation present in parental/F₁ generation; plants in parental/F₁ generation genetically identical; 	2	
	(c)	mean halfway between means for Tom Thumb and $F_1/$ between 9 and 11 cm cob length;	1	[6]
13.	(a)	Variation results from environmental factors; Slight differences in uterus which affect development of twins; Such as nutrient supply;	max 2	

(b) Need to rule out differences due to "accidents"/more likely to (i) determine effect on longevity 1 (ii) Smaller differences between monozygotic twins; Suggests genes involved; Not identical, therefore environment involved; Differences may not be significant/may be due to chance; max 3 [6] 14. (a) (i) range between extremes/no discrete types; strong environmental influence; polygenic/many genes involved; quantitative. 2 (ii) discrete types; little/no environmental influence/only genetic; (often alleles of) 1/2 gene; qualitative. (reject references to few genes) 2 (b) blood groups no environmental influence, (so only two types); height has environmental factors (producing a range for each type) 2 [6] 15. sections of chromatids exchanged; (a) sections have different alleles: new combinations of (linked) alleles; (allow 1 mark for idea that ,genes" are exchanged, if no other marks gained) 3 length controlled by many genes /polygenes; (b) (i) each gene may have different alleles / idea of additive effects;

each gene may have different alleles / idea of additive effects; OR environmental factors / or named factor; how named factor may affect growth of seeds; 2 max PMT

		 (ii) 1. selection of large seeds for sowing; 2. higher proportion of alleles for long length; 3. loss of alleles for short seeds from population; 4. reference to distribution curves, e.g lower end 'cut off'; 5. (possible appearance of) new alleles through mutation; 6. process repeated over many generations; (<i>G</i> - allow 1 mark idea for that ,largeness "selected, survives and inherited) 	4	[9] QWC 1
16.	(a)	one / two / few genes versus many / polygenic; limited / none versus significant; limited / few versus wide / many;	3	
	(b)	<u>named</u> difference in environmental factor during pregnancy e.g. nutrient supply;	1	[4]
17.	(a)	greater environmental influence than genetic;	1	
	(b)	identical twins have same genotype / converse for non-identical; compare identical and non-identical twins / identical twins who have been separated / non-identical twins in same environment; if genetic - similarity between identical twins / converse; large sample required / use a statistical test;	4	[5]
18.	(a)	Independent assortment/random alignment of (homologous) chromosomes; Different combinations of maternal and paternal chromosomes; <i>OR</i> <i>C</i> rossing over; Different combination of alleles/exchange of genetic material;	2	
	(b)	 (i) Variety A plants are taller; Variety A with a greater range of heights; Variety A plants are normal distribution/less skewed; <i>Q</i> Do not credit imprecise references to plant A being taller. Accept unambiguous description for third point. Unqualified pronouns in the context of this question refer to artery 	2 max	

[8]

(ii)	Will give higher yield as shorter stems; More energy goes to producing grain/less likely to be blown down;	2
	${oldsymbol Q}$ Do not accept unqualified references to such features as expense	
Show Likel	y greater variation; y some individuals will have alleles/characteristics for survival;	2

(c)