1. (a) A Carries the (genetic) code / genetic instructions / DNA / makes mRNA / transcription / makes ribosomes;

B Links amino acids / synthesises / makes protein;
C Involved in modifying / packaging protein / forms glycoproteins / forms vesicles;
(b) (i) Mitochondrion;
0.01% as opposed to 0.003%;
Accept any valid approach but must be clear as to what the calculations relate
(ii) With electron microscopes sections must be cut;

Cisternae are joined to each other;
Outside plane of section;
(iii) Protein synthesis requires energy / ATP;

Mitochondria release energy / make ATP;
From respiration;
Do not award credit for second point if candidate refers to mitochondria making / producing energy
2. (a)

Red blood cell
Does not contain ribosomes
No cell wall
No capsule
No flagellum
No mesosomes
No plasmid
No genetic material / DNA
[Note: Must compare like with like]

Bacterial cell

Contains ribosomes;
Cell wall;
Capsule;
Flagellum;
Mesosomes;
Plasmid;
Genetic material / DNA max 2
(b) No nucleus/ DNA;
(Nucleus) codes for protein/ can't make RNA;
OR No ribosomes / rough endoplasmic reticulum;
Protein is made/ synthesised/ translated (on ribosomes);
OR No mitochondria;
(Mitochondria) supply energy/ ATP for making proteins;
$\max 2$
(c) (i) Red blood cells do not contain endoplasmic reticulum/ do not have membrane-bound organelles;
[Note: Not enough to say 'because there aren't any]
(ii) Water potential inside cell more negative/ lower;

Water moves in by osmosis/ diffusion.
(d) (i) Have a greater surface area to volume ratio/ shorter distance to centre; 1
(ii) Cell membrane of abnormal cell not as strong/ spectrin strengthens membrane;
(e) 1 Amino acid based on carbon with four groups attached;

2 Amino/ NH_{2} and carboxyl / COOH ;
3 R-group/ side chain + hydrogen;
4 R-group differs from one amino acid to another;
5 Amino acids joined by condensation;
6 Bond formed between NH_{2} and COOH ;
7 Involves removal of molecule of water;
8 H from NH_{2} and OH from COOH ; $\quad \max 6$
3. (a) Epithelium of alveolus, capillary wall/epithelium/endothelium, plasma;
(b) Cell wall;

Capsule;
Flagellum;
Mesosomes;
Plasmid;
Genetic material/DNA/nucleoid;
Ribosomes;
Accept references to size only if some idea of range is given
(c) Large (surface) area;

For diffusion;
or
Short distance to centre of cel1/to all haemoglobin; For diffusion;
(d) (i) Correct answer of approximately 7800/8000 $=2$ marks Incorrect answer but clearly derived by dividing diameter of cell A by 7
$=1 \mathrm{mark}$
(ii) Idea of cut through maximum diameter/middle; 1
4. (a) (i) $31 / 31.2$; 1
(ii) Ratio would be less/smaller;

Cell is thin / has large surface area / (adapted) for diffusion;
Accept converse. Must relate to concept of ratio.
(b) (i) 6; 1
(ii) 11 ; 1
(c) Water potential inside vesicle more negative/lower; Water moves into vesicle by osmosis/diffusion;2
(d) Mitochondria supply energy/ATP;

For active transport / absorption against concentration gradient / synthesis / anabolism / exocytosis / pinocytosis;
Do not credit references to making, creating or producing energy.
(e) 1 Phospholipids forming bilayer/two layers;

2 Details of arrangement with "heads" on the outside;
3 Two types of protein specified;
e.g. passing right through or confined to one layer /
extrinsic or intrinsic /
channel proteins and carrier proteins /
two functional types
4 Reference to other molecule e.g. cholesterol or glycoprotein;
5 Substances move down concentration gradient/from high to low concentration; Reject references to across or along a gradient
6 Water/ions through channel proteins/pores;
7 Small/lipid soluble molecules/examples pass between phospholipids/through phospholipid layer;
8 Carrier proteins involved with facilitated diffusion; Ignore references to active transport.
Credit information in diagrams.
5. (a) Large surface area to volume ratio;

For diffusion;
OR
Flat/thin;
So oxygen can reach all haemoglobin/centre rapidly / short pathway;
(b) (i) Partially permeable / allows water through but not sucrose;

Accept semi-permeable / selectively permeable.
(ii) Phospholipid (in membrane)/bilayer dissolved/broken down; Allows haemoglobin/contents to leak out;
(c) (i) Monocyte has a nucleus / red blood cell does not;
(ii) Granulocyte has lobed nucleus;

Reject C - Shaped
6. (a) (i) Mitochondria site of respiration;

Production of ATP / release of energy;
For contraction;
Do not award credit for making or producing energy.
(ii) Enzymes are proteins;

Proteins synthesised/made on ribosomes;
(b) Lysosomes produce/contain enzymes;

Which break down/hydrolyse proteins/substances/cells of tail;
(c) 1. Chop up (accept any reference to crude breaking up);
2. Cold;
3. Buffer solution;
4. Isotonic / same water potential;
5. Filter and centrifuge filtrate;
6. Centrifuge supernatant;
7. At higher speed;
8. Chloroplasts in (second) pellet; $\max 6$
7. (a) presence of nuclei; 1
(b) (i) 1 mark growth clearly calculated from difference between lengths at beginning and end of lesson

2 marks correct answer of $300 \mu \mathrm{~m}$
(Allow for slight measurement errors)
(ii) divide by time (between measurements); 1
(c) blue-black/dark blue/purple/black; iodine added to slide/specimen /granules;
8. (a) removes debris/intact cells/sand; which would contaminate sediment $\mathrm{A} /$ interfere with the results;
(b) (i) nuclei; 1
(ii) ribosomes/endoplasmic reticulum/membrane/Golgi; 1
(c) density/size/mass/weight; 1
(d) an electron microscope has a higher resolution; electrons with shorter wavelength;
9. (a) Measure diameter of field with ruler; And proportion taken up by the cell; or Measure length with (eyepiece) graticule/eyepiece scale; Calibrated against stage micrometer/something of known length;

Reject divide apparent length by magnification
(b) Membrane/cytoplasm shrinks/pulls away from cell wall/cell plasmolysed/ goes flaccid; Water moves down water potential gradient/to lower/more negative water potential; By osmosis;
(c) (i) Reaches equilibrium/no further/maximum change in length; 1 Reject osmosis takes time
(ii) Line/curve of best fit; Extrapolate (and read off)/ find where it crosses x -axis;
(iii) Greater decrease/length smaller; More water removed; Greater difference in water potential/cell with higher/less negative water potential; Starch is insoluble/has no effect on osmosis
10. (a) (i) Crista/inner membrane; 1
(ii) Matrix; 1
(b) B; 1
(c) (i) Reduce/prevent enzyme activity; 1
(ii) Prevents osmosis / no (net) movement of water;

So organelle/named organelle does not burst/shrivel; 2
Q Allow reference to cell rather than organelle for first mark point only.

Regard damage as neutral
(d) (Mitochondria) use aerobic respiration;

Mitochondria produce ATP/release energy;
Energy/ATP required for muscles (to contract); 2 max
Q Do not accept reference to making/producing energy.

