1.	(a)	(i)	Carbon + hydrogen and oxygen in 2: 1 ratio/same proportions as in water;	1	
		(ii)	Needs to be hydrolysed/glycosidic bond broken; Product is a reducing sugar/glucose/fructose/monosaccharide; Frees aldehyde/carbonyl/ketone group;	max 2	
	(b)	(i)	Many different sorts of proteins; Different primary structures/sequences of amino acids; Tertiary structure; Shape; allowing formation of receptor/binding site/site into which substance/substrate fits;	max 3	
		(ii)	Glucose and maltose soluble/starch insoluble;	1	
		(iii)	Have similar molecular shape/structure / similarly positioned chemical groups; so bind to/fit receptors;	2	
	(c)	(i)	Doesn't contaminate product/stays in reactor at finish/re-use/allows continuous reaction;	1	
		(ii)	At low temperatures/9°C; Relatively little kinetic energy/molecules only moving slowly; Fewer collisions with enzyme; Slower rate of reaction/takes longer for lactose to be reduced/some substrate goes through unchanged;		
			or		
			Enzyme concentration limiting; Substrate in excess; Saturation of active sites/all occupied; Some substrate goes through unchanged;	max 3	
	(d)	(i)	Fewer substrate/lactose molecules/lactose concentration falls; Therefore less chance of collision with enzyme/forming enzyme substrate complex;	2	
		(ii)	Economic reason such as		
			low levels of lactose not harmful/would take too much time/ high cost involved in removing all lactose;	1	[16]
2.	(a)	(i)	Energy put in to get reaction started (Look for idea of getting started);	1	
		(ii)	Curve showing energy levels at start and finish the same; and lowered activation energy;	2	

	(b)		dict's / Fehling's reagent and heat; ge / red / brown / yellow / green;	2	
	(c)	(i)	Acid hydrolyses starch / breaks glycosidic bond;	1	
		(ii)	Not specific / forms by-products / alters pH / corrosive;	1	
	(d)	(i)	Molecules would have less (kinetic) energy; move slower; fewer collisions / fewer E–S complexes form;	max 2	
		(ii)	Change in pH alters charge / shape; distorts active site / tertiary structure of enzyme / denatures enzyme; substrate will no longer fit active site;	3	[12]
3.	(a)	(i)	Less substrate (molecules) present; Due to them being used up in reaction;		
			OR <u>Product</u> inhibits reaction; Allosteric / competitive / non-competitive inhibition;	2	
		(ii)	Double; Increase of 10°C doubles rate of reaction;		
			OR		
			Increase; Increased KE/ increased energy of molecules / increased movement;	2	
	(b)	To sh	now that <u>enzyme</u> was responsible for conversion, (no other factor);	1	[5]
4.	(a)	(i)	Transfers phosphate;	1	
		(ii)	Enzyme - active site; Substrate – Complementary shape/structure Shape/structure allows fitting/bending/ formation of E-S complex;	2	
	(b)		r/solute potential in cells of lens becomes more negative/decreases; r enters by osmosis/diffusion;	2	
	(c)	(i) (ii)	Both involve loss of water molecule/condensation; $C_{12}H_{22}O_{11}$;	1	
		(ii)	$C_{12} C_{12} C_{11},$	1	

	(d)	2 tails protei	ram showing phospholipid bilayer, molecules correctly orientated, s labelled; in passing through the membrane; hydrate attached to one side of protein;	3	[10]
5.	(a)	(i)	Divide amount of product produced by time taken / calculate gradient / slope of graph; (<i>R Numerical answer without supporting calculation</i>)	1	
		(ii)	Higher temperatures means molecules have more (kinetic) energy; (<i>Look for idea of molecules</i> .) Move faster; Greater chance of collision (between enzyme and substrate); More chance of enzyme-substrate complex being formed;	max. 3	
	(b)	At 65	°C enzyme has been denatured / description of denaturing;	1	
	(c)	To m	aintain a constant pH;	1	[6]
6.	(a)	(i)	More (kinetic) energy; (Molecules) moving faster; R references to vibrating I activation energy Greater chance of collision More E-S complexes formed;	max 3	
		(ii)	Bonds/specified bonds break; R peptide bond Tertiary structure disrupted / denatured / active site destroyed; Substrate no longer fits / binds with active site / ES complex not formed:	3	
	(b)	Break	somes contain enzymes / lysozyme; c down proteins; n they burst;	max 2	[8]
7.	(a)	(i)	The receptor / glucagon will have a particular shape / tertiary structure; The other will fit / bind because of its shape;	2	
		(ii)	Cells in other parts of the body do not have these receptors / Liver cells have these receptors;	1	

(b)	Side chains / R-groups are differen	t;	1	
(c)	Tertiary structure changes / enzyme Will affect active site (of enzyme); Starch cannot bind / fit / form enzy		;	
	Staren eaniot ond 7 nt 7 form enzy	me-substrate complex,	5	
(d)	Keeps pH constant; So proteins / enzymes in mitochone	dria not denatured / affecte	d; 2	
(e)	 Some proteins pass right through Some proteins associated with on Involved in facilitated diffusion; Involved in active transport; Proteins act as carriers; Carrier changes shape / position; Proteins form channels / pores; Protein allows passage of water s charged particles / correct named 	e layer; soluble molecules /	6 max	[15]
(a)	A molecule which stimulates an im production / surface protein / glyco		1	
(b)	(i) Plasma cells;		1	
	(ii) Memory (B) cells;		1	
(c)	Carried (an immunological) memor Produces large amounts of plasma is encountered a second time; Rapid production of antibodies;		ntigen	
	Not just 'bigger immune response'		2 max	
(d)	Measles	Influenza	3 max	
	-	Several antigens/ changing		
		Several types of		

Measles	Influenza
One antigen/	Several antigens/
unchanging	changing
One type of memory	Several types of
cell/ antibody	memory cell/
needed;	antibodies needed;

8.

1

[8]

		(ii)	Way in which whole molecule is folded / globular shape / folding of secondary structure / further folding / <i>Do not accept 3D shape if not further explained.</i> Structure held by ionic / disulphide bonds; <i>reject hydrogen</i> <i>bonds / peptide bonds only.</i>	1	
		(iii)	Causes bonds which hold the tertiary structure / named bond; To break; Shape no longer maintained / protein denatured;	2 max	
	(b)	(i)	5;	1	
		(ii)	Substrates / active sites with shapes; Active site / substrate with complementary (shape); Fitting / binding / forming E-S complex;	3	[8]
10.	(a)	(i) (ii)	Activation energy / amount of energy required for reaction; Curve starting and finishing at correct energy levels;	1	
		(11)	Activation energy lower (i.e. less than x);	2	
		(iii)	Energy in products less (than in substrate / hydrogen peroxide); Energy given off / lost as heat / exergonic / exothermic;	2	
	(b)	Mov	ecules have) less (kinetic) energy; e slower; er collisions / fewer enzyme-substrate complexes formed;	2 max	[7]
11.	(a)	Move Few comp	ecules) with little (kinetic) energy; e slowly; collisions (between enzyme and substrate)/fewer enzyme-substrate blexes formed; e: Question refers to slow rate at 5°C and answer must be in this context.)	3	
	(b)	bond Dena Alter	ing would cause bonds (maintaining tertiary structure)/named s to break: turing enzyme/ altering tertiary structure; ing shape of active site; e: if answers clearly relate to lactose, they are incorrect)	max 2	[5]

2

1

It is a protein; [<i>Reject: blue or pink colour</i>]			
(b)	(i)	Fell <u>as</u> it was used up/ broken down/ changed;	

	(ii)	Substrate becomes limiting/ falls/ gets less; Fewer collisions/ complexes formed;	2
	(iii)	1nitial rate slower; Levelling out at same value;	2
(c)	As th	bles a comparison to be made; ne rate/concentration changes as reaction progresses; s/ catalase may become damaged/affected by heat;	max 2

[9]

13.	(a)	(i)	Curve rising and levelling out;	1
		(ii)	Substrate becomes limiting/falls/gets less; Fewer collisions/complexes formed;	2
	(b)	To k	eep pH the same / optimum pH / so change in pH does not affect reaction	n; 1
	(c)	(i)	For temperature up to $40 - 50^{\circ}$ C has no effect; Over temperature (of $40 - 50^{\circ}$ C) reduces rate of reaction; <i>Note. Award one mark for general statement about the longer the</i> <i>incubation time, the slower the rate of reaction.</i>	2
		(ii)	Bonds (holding tertiary structure) broken; More enzyme denatured / tertiary structure destroyed; Active sites lose shape/no longer fit; Fewer enzyme-substrate complexes formed; <i>Note. Award marks if clearly in the context of more denaturation.</i>	max 3

Allow credit here for converse relating to exposure for 5 minutes.

	(d)	Non non 2 S 3 Ir <u>Non</u> 4 A 5 D <u>Inh</u> 6 P	tatement about two types, competitive and non-competitive; e. Award points 2 –5 only in context of competitive and e-competitive inhibition <u>npetitive</u> imilarity of shape of inhibitor and substrate; whibitor can enter/bind with active site (of enzyme); <u>n-competitive</u> ffect/bind to enzyme other than at active site; istorts shape of active site; istorts shape of active site; ibitors revent entry of/binding of substrate to active site; herefore fewer/no enzyme-substrate complexes formed;	max 6	[15]
14.	(a)	(i) (ii)	Hydrolysis; Water enters fungus (by osmosis);	1	
			Increases pressure inside fungus; Cell wall no longer strong enough/present so cannot withstand this;	max 2	
		(iii)	Cell wall (of plant) not made of chitin/made of cellulose; Enzyme is specific to chitin / will not break down cellulose;	1	
	(b)		y in which the whole protein/polypeptide is folded / shape adopted by ble protein molecule / further folding of 2° structure;	1	
			Do not credit unqualified reference to three-dimensional shape. Reject third level /third sort.		
	(c)	(i)	More (kinetic) energy; Bonds/specified bonds (holding tertiary structure) break;	2	
		(ii)	Change amino acids; Allowing formation of more hydrogen bonds/disulphide bridges;	2	
	(d)	2 3 4 5 6	Sequence of amino acids gives shape; This is tertiary structure; Has similar shape to substrate; Fits / competes for active site; Fits at site other than active site; Distorting active site;		
		7	Therefore substrate will not fit (active site);	max 6	[15]

15. (a) (i) (Grinding) breaks open cells / increases surface area (of liver); Releases catalase/enzyme/more catalase / allows more hydrogen peroxide into liver; (ii) Heating causes bonds (maintaining tertiary structure) to break; Denatures / changes tertiary structure; Active site changed; Substrate no longer fits / ES complex not formed; max 3 (Control) to show that sand did not affect reaction (with ground liver); 1 Lower activation energy / less energy required to bring about reaction; 1 (ii) Energy in products/water and oxygen less than energy in substrate/ reactants/hydrogen peroxide; (Difference) given out as heat / exothermic; 2 [9] (Molecule) made up of many identical/similar molecules/monomers/ subunits: 1 Not necessary to refer to similarity with monomers. (ii) Cellulose / glycogen / nucleic acid / DNA / RNA; 1 To keep pH constant; A change in pH will slow the rate of the reaction / denature the amylase / optimum for reaction; 2 1 (ii) Purple/lilac/mauve/violet; Do not allow blue or pink. Protein present; (iii) The enzyme/amylase is a protein; Not used up in the reaction / still present at the end of the reaction; max 2 [7]

17. diagram showing molecule A fitting in inhibition site; distortion of active site; 2 (a) (b) molecules moving less/slower; reduces chance of collision (between enzyme and substrate)/of enzyme-substrate complexes being formed; (reject converse) 2

(b)

(c)

(a)

(b)

16.

(i)

(i)

(i)

	(c)	these bonds hold/maintain tertiary/globular structure (of enzyme); enzyme denatured/tertiary structures destroyed; (shape of) active site distorted/changes;		
		substrate no longer fits/enzyme-substrate complex not formed;	3 max	[7]
18.	(a)	Lilac/purple/mauve/violet; Xanthine oxidase is a protein;	2	
		Reject pink or blue as the resulting colour with biuret.		
	(b)	Substrate has specific shape; Allows binding/fitting/forms ES complex with active site; Or		
		Active site has specific shape; Allows binding/fitting/forms ES complex with substrate;	2	
		Accept structure \equiv shape	-	
	(c)	Xanthine <u>similar</u> shape to drug; Drug fits active site/competes for active site/is a competitive inhibitor; Less/no uric acid formed;	3	[7]
19.	(a)	(i) 150; (ii) 27;	1	
	(b)	(ii) 27; 100;	1	
	(0)	number of peptide bond hydrolysed = total number present / all peptide bonds have been hydrolysed;	2	
		accept calculation showing same number top and bottom.		
	(c)	curve rising to peak at pH 2 and falling to zero by pH 6;	1	
	(d)	(change in pH) leads to breaking of bonds holding tertiary structure / changes charge on amino acids; enzyme/protein/active site loses shape/denatured;		
		substrate will not bind with/fit active site; fewer/no ES complexes formed;	3 max	
	(e)	more resistant to changes in pH and washing conditions variable/ works in alkaline pH and washing powders alkaline; <i>mark awarded for indicating aspect of effect of pH <u>and</u> advantage of this in terms of washing powder and conditions in wash.</i>	1	

	(f)	 maximum of three marks for specificity, points 1 - 4. Can only be given credit in context of specificity 1 each enzyme/protein has specific primary structure / amino acid sequer 2 folds in a particular way/ has particular tertiary structure; 3 active site with unique structure; 4 shape of active site complementary to/ will only fit that of substrate; maximum of three marks for inhibition, points 5 - 8 5 inhibitor fits at site on the enzyme other than active site; 6 determined by shape; 7 distorts active site; 8 so substrate will no longer fit / form enzyme-substrate complex; 	nce; 6 max	[15]
20.	(a)	Shape drawn that resembles the active site; drawn in the active site / clearly going to the active site;	2	
	(b)	Substrate concentration not limiting / enzyme concentration limiting; all active sites of enzyme full / enzyme at maximum turnover rate;	2	
	(c)	(More substrate than inhibitor so) more likely to form enzyme-substrate complex; more likely for substrate to enter the active site:	1	
	(d)	Correctly named bonds broken / water removed; tertiary / globular shape of enzyme changed; shape of <u>active site</u> affected;	3	[8]
21.	(a)	amino acid;	1	
	(b)	violet/purple/mauve/lilac;	1	
	(c)	Amino acid/substrate shape/structure changed; Active site of enzyme; No longer fits/ no longer complementary / enzyme: substrate complex not formed;	3	[5]

22.	(a)	enzyme has an active site; with a complementary shape to the substrate molecules; enzyme-substrate complex formed; lowering the (activation) energy for the reaction; glycosidic bond formed/bringing together hydroxyl groups/water molecule removed; products leave the active site; enzyme unchanged;	nax. 4	
	(b)	enzymes involved; formation of the enzyme-substrate complex reliant on the correct pH; pH affects the active site; by disrupting bonds/altering charge; lowering temperature will reduce pH; enzymes have optimum pH; pH change will slow the rates of reactions;	nax. 5	[9]
23.	(a)	(i) Oxygen given off/is a gas/spray lost;	1	
		 Less substrate/hydrogen peroxide/substrate becomes limiting; Less collisions with enzyme active sites; 	2	
	(b)	Curve showing steeper fall; Reaches same final mass;	2	
	(c)	No, would show that there was nothing else in the potato that produced the reaction;	1	[6]
24.	(a)	COOH; NH ₂ .	2	
	(b)	(Chain folded into) tertiary structure / particular 3-D shape (<i>not just globular</i>) active site formed; substrate molecules fit this site:	; 3	
	(c)	reduce activation energy for reaction Walls made of different materials / peptidoglycan or murein v. cellulose;	3	
	. /	specificity of active site / substrate does not fit.	2	[7]

25.	(a)	(i)	maltose.	1	
		(ii)	Activation energy reduced; starch attached to active site / formation of enzyme-substrate complex less energy required to bring (substrate) molecules together / to break bonds; reaction occurs in small(er) steps; change in shape of enzyme molecule (induced fit) brings molecules together / allows bonds to break / causes overlapping of electron orbits of substrates.	; max 3	
	(b)	of de chan chan subst	rme (molecules) denatured at 60°C / high temperature, or description enaturing (e.g. vibration disrupts enzymes); ge (in shape) of <u>active site;</u> ge in tertiary/'3D'structure / hydrogen bonds broken; trates no longer fit; of activity of enzyme in water bath due to slow denaturing.	max 4	101
26.	(a)		nide binds to enzyme molecule away from active site; e of active site changed.		[8]
			cyanide attaches permanently to active site; e site blocked.	2	
	(b)	(i) (ii)	Protein (receptors) / antigen / glycoprotein / glycocalyx. Enzyme + antibody attaches (to membrane); of cancer cells <u>only;</u> Enzyme breaks down (injected) linamarin;	1	
			Cyanide released disrupts respiration/metabolism of cancer cells.	max 3	[6]
27.	(a)	Activ	ve site;	1	

(b)	Substrate enters active site;
	Complimentary shapes / Lock and Key;
	(Binding) to form enzyme-substrate complex;
	Lowering of activation energy;
	Conformational / shape change;
	Breaking of bonds in substrate;
	Products no longer fit active site and so are released;

4

Caus Mol e Prev	ses enzyme / active site to change shape; ecule B can enter / competes for active site; ents substrate from entering / no enzyme-substrate	4	
(i)	Optimum pH is 7 / neutral / between 6 and 8 / between 7 and 8;	1	
(ii)	Max rate = $\frac{\text{Distance}}{\text{Time}} / \frac{11}{4} / \frac{11}{4 \times 60};$	2	
	[Correct answer = 2 marks (<i>IGNORE units</i>) 2.75 mm / hours 0.046 mm / min 4.6×10^{-3} mm / min		
	$1 \text{ mm}/21.8 \text{ mins}, 23.76 \text{ mm}^2/\text{hour}]$		
		[12]	
	Caus Mole Prev comp	(ii) Max rate = $\frac{\text{Distance}}{\text{Time}} / \frac{11}{4} / \frac{11}{4 \times 60}$; [Correct answer = 2 marks (<i>IGNORE units</i>) e.g. 2.75 mm / hour, 0.046 mm/min, 4.6 × 10 ⁻³ mm/min	Causes enzyme / active site to change shape; Molecule B can enter / competes for active site; Prevents substrate from entering / no enzyme-substrate complex formed / active site blocked; 4 (i) Optimum pH is 7 / neutral / between 6 and 8 / between 7 and 8; 1 (ii) Max rate = $\frac{\text{Dis tance}}{\text{Time}} / \frac{11}{4} / \frac{11}{4 \times 60}$; 2 [Correct answer = 2 marks (<i>IGNORE units</i>) e.g. 2.75 mm / hour, 0.046 mm/min, 4.6 × 10 ⁻³ mm/min 1 mm/ 21.8 mins, 23.76mm ² /hour]

(a) <u>Temperature</u> Rate of reaction increases; Increasing temperature increases rate of movement of molecules/ kinetic energy; Collide more often/substrate enters active site more often/more enzyme-substrate complexes formed; Up to <u>optimum</u>; Rate of reaction decreases; High temperatures cause denaturation/loss of tertiary structure/3D structure; By breaking specified bonds (not peptide bond); Active site altered/substrate cannot bind/fit/

28.

(b) (i) Inhibitor is a different shape to substrate; Binds at position other than active site/allosteric site; Alters shape of <u>active site</u>; Substrate cannot bind/enzyme-substrate complex not formed; 4
(ii) <u>Competitive inhibition</u>; Ethanol/ethylene glycol compete for same active site; Molecules similar shape (not same)/both complementary to/both fit active site;

N.B. If graphically explained, axes must be labelled or scores 0 marks.

Prevents/slows production or build up of oxalic acid/toxic products; Ethylene glycol excreted (without causing death);

[14]

6

4

[14]

29. (a) lowers activation energy; relevant mechanism e. g. brings molecules close together / reaction in smaller steps / change in charge distribution / proton donation or acceptance / induced fit ensuring substrates brought in correct sequence; including relevant reference to active site; 3 (b) (i) add iodine (solution); blue / black colour; 2 (ii) heat with Benedict's (solution); brick red / brown / orange / green / yellow colour; (max I mark if non-reducing sugar test described) 2 (c) (i) 48 56-58 51-54 (all correct); 1 (ii) description increase up to 48 / optimum allow ECF from (i); decrease above 48 / optimum allow ECF from (i); explanation of increase increased KE / move faster: therefore more collisions / more enzyme-substrate complexes formed; with active site; explanation of decrease denaturation / 3D structure changed / tertiary structure changed; detail e.g. breaking of hydrogen / sulphur bonds; (reject peptide bonds) shape of active site changed; substrate no longer fits; 6 max 30. COOH / HOOC (either side); (if bonds shown, must be correct) (a) NH₂ / H₂N (either side); (*if bonds shown, must be correct*) 2

(b) (i) increases up to 20 - 29 units of urea / rate 20 - 21 since urea concentration limiting rate / more urea - enzyme collisions ONCE; then (high) constant / levels off; since active sites all (continually) occupied; (*saturated neutral*) other named factor limiting e.g. enzyme concentration; (max 3 marks for part (i))

[8]

(ii)	increases up to $45 - 50$ units / rate $17 - 19$; since urea concentration limiting rate / more urea – enzyme	6 max
	collisions ONCE;	
	NBPT reduces rate of reaction;	
	reduction greater at low concentration of urea than at high concentration	ion;
	NBPT competitive inhibitor / competes for active site;	
	since complementary shape / similar shape to substrate (NOT same shape shape / similar shape to substrate (NOT same shape shap	· /·
	at high concentrations urea competes more successfully for active site	e /
	more enzyme – urea collisions;	

31.	(a)	 substances/molecules have more (kinetic) energy/moving faster; (<i>reject vibrate</i>) increased collisions / enzyme substrate complexes formed; 	2	
		 (ii) causes denaturation/tertiary structure/shape change; H⁺/ionic bonds break; (shape) of <u>active site</u> changed; substrate no longer binds/not complementary to (active site); 	3 max	
	(b)	all substrate changed into product / reaction is complete; same amount of product formed; same initial substrate concentration;	2 max	[7]

32.	(a)	C ₁₂	; H ₂₂ O ₁₁ ;	2	
	(b)	(i)	<u>heat</u> with Benedict's; yellow/brown/orange/red;	2	
		(ii)	(yes) (<i>may appear on second line</i>) more precipitate in sample B ; both sugars are reducing sugars/ give a positive test;	2	[6]

33.	(a)	specific 3D tertiary structure/shape;	
		substrate complementary shape; (reject same shape)	
		substrate (can bind) to <u>active site</u> / can fit into each <u>active site</u> ;	3

	(b)	(bacterial) active site/enzymes/proteins denatured / tertiary 3D structure disrupted/changed; (ionic) bonds broken; (<i>reject peptide bonds</i>) (<i>ignore other bonds</i>) no enzyme substrate complex formed / substrate no longer fits;	3	[6]
34.	(a)	maximum rate at which enzyme can combine with substrate / form enzyme-substrate complexes / substrate no longer limiting / enzyme is a limiting factor; (active site of) enzyme saturated with substrate (<i>disqualify active sites/enzymes 'used up'</i>);	2	
	(b)	inhibitor attaches to enzyme away from the active site; changes shape of active site; prevents formation of enzyme-substrate complex;	2 max	
	(c)	$\frac{7.6-5.6}{7.6} \times 100;$ = 26.32%; (accept 26% or 26.3%) (correct answer = 2 marks) (principle - $\frac{decrease \text{ in rate}}{maxrate} \times 100 = 1 \text{ mark}$)	2	
	(d)	curve below top curve (without inhibitor) joining to top curve / continues to increase to end of <i>x</i> -axis (<i>must not exceed or level out below 'without inhibitor curve' and must start from origin</i>);	1	[7]
35.	(i) (ii)	absorbs/transports triglycerides/fats/lipids/chylomicrons; enables villi to move;	1	
	. /	increased contact with food;	2	[3]
36.	(a)	 (i) absorbed by diffusion; no energy/ATP available / active transport requires energy/ATP; (disqualify energy made) (allow energy reference in either (i) or (ii)) 	2 max	
		(allow energy reference in either (i) or (ii))(ii) absorbed by active transport;	1	

(b) (absorption by) diffusion no longer occurs / diffusion/movement of ions equal in both directions; because no concentration/diffusion gradient / reached equilibrium; 2 (c) malonate fits into/blocks active site of enzyme / complementary to active site; (prevents fitting neutral) competes with substrate / is a competitive inhibitor / prevents substrate forming enzyme-substrate complex; 2 [7] 37. colour results from starch-iodine reaction; (a) decrease due to breakdown of starch by carbohydrase/enzyme; 2 1 (b) (i) curve drawn below curve on graph and starting at same point; (ii) curve drawn above curve on graph and starting at same point but finishing above; 1 (allow curve or horizontal line) (allow alternative curve for pH if explanation in (ii) is consistent) (c) (i) 1 increase in temperature increases kinetic energy; increases collisions (between enzyme/active site and substrate) / 2 increases formation of enzyme/substrate complexes; increases rate of breakdown of starch /rate of 3 reaction/carbohydrase activity; (decrease in pH) increases H⁺ ions/protons; (ii) 4 attach/attracted to amino acids; 5 6 hydrogen/ionic bonds disrupted/broken; denatures enzyme / changes tertiary structure; 7 changes shape/charge of active site; 8 active site/enzyme unable to combine/fit with 9 starch/enzyme-substrate complex no longer able to form; decreases rate of breakdown of starch/rate of reaction /carbohydrase activity; 7 max (allow alternative explanation for pH if consistent with line drawn in (ii)) [11]

[7]

38.	(a)	Detai	ure diameter / radius / area of clear zone; l of method e.g. determine mean diameter of each clear zone / f graph paper to determine area;	2
	(b)	No m	easurements at intermediate pH values i.e. 5-7 / 7-9;	1
	(c)	Ionic	me denatured / tertiary structure altered; / hydrogen bonds broken; rrate cannot bind to active site;	2 max
			${oldsymbol Q}$ To gain first marking point, answer should use terminology specified in scheme	
	(d)		of denatured / boiled enzyme; pH values;	2
39.	(a)	(i)	Glucose; Fructose; <i>Any order.</i>	2
		(ii)	Lactose has a different shape/structure; Does not fit/bind to active site of enzyme/sucrase; Only allow a second mark if reference is made to the active site. Max 1 mark if active site is described as being on the substrate.	
			OR Active site of enzyme/sucrase has a specific shape/structure; Does not fit/bind to lactose; Do not accept same shape.	2
	(b)	(i)	Rose and fell; Peak at 45 (minutes) / concentration of 6.6 (mmol dm ⁻³);	2
		(ii)	Glucose (produced by digestion) is absorbed / enters blood; Decrease as used up/stored;	2

		(iii)	Curve roughly parallel to the x-axis or falling, starting from approximately the same point;	1	[9]
40.	(a)	Enzy	me/active site has a (specific) tertiary structure;		
		Only	glucose has correct shape / is complementary / will bind/fit;		
		To a	ctive site;		
		(For	ning) enzyme-substrate <u>complex;</u>	3 max	
			Q Allow second mark if candidate refers to correct shape or complementary in terms of the enzyme. Do not allow 'same' shape		
			${\it Q}$ Do not allow third mark if active site is described as being o substrate.	n	
	(b)		y detects glucose whereas) Benedict's detects (all) reducing rs/named examples;		
			ides a reading / is quantitative / Benedict's only provides a colour / n't measure concentration / is qualitative/semiquantitative;		
		Is mo	pre sensitive / detects low concentration;		
		Red	colour/colour of blood masks result;		
		Can	monitor blood glucose concentration continuously;	2 max	
			${\it Q}$ Do not credit quicker/more accurate unless qualified.		
			${\it Q}$ Allow Benedict's detects monosaccharides for first mark point.		
	(c)	(i)	Broken down by enzymes / digested / denatured (by pH) too large to be absorbed;	1	
		(ii)	Study not carried out on humans / only carried out on rats; Long-term/side effects not known; Scientists have vested interest;		
			Study should be repeated / further studies / sample size not known;	2 max	[8]
					[~]