Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level In Biology (WBIO2)
Development, Plants and the Environment

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WBI02_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer		Additional guidance	Mark
1(a)			NOT two responses in one box ACCEPT phonetic spellings NOT psychological for mp1	
	Description of adaptation	Type of adaptation		
	Sea anemones produce a poison.	physiological ;		
	This poison is located in the tips of the tentacles.	anatomical ;		
	Clownfish are brightly coloured, this attracts small fish to the sea anemone.	anatomical ;		
	Clownfish feed on dead sea anemone tentacles.	behavioural ;		(4)

Question Number	Answer	Additional guidance	Mark
1(b)	Sea anemone : 1. provides \{food / shelter / protection\} for the clownfish ; 2. feeds on fish ; Clownfish : 3. brings $\{$ food / fish $\}$ to the sea anemone ; 4. feeds on tentacles (of sea anemone) ;	1. IGNORE habitat 3. ACCEPT attracts fish to the sea anemone	(3)

Question Number	Answer	Additional guidance	Mark
2(a)(i)	1. increase in concentration of drug \mathbf{A} increases the percentage of mice killed / eq ; 2. idea that the increase is non-linear ; 3. use of figures to support the range OR manipulation of figures to show change ;	IGNORE any reference to B 1. ACCEPT positive correlation 3. Acceptable range points on the graph: - drug A is only effective at concentrations higher than 0.12 / 0.13 (a.u.) - drug A concentration of over 0.74 / 0.76 / 0.78 (a.u.) kills all the mice Manipulation of figures on the graph: e.g. drug A concentration increase from 0.2 (a.u.) to 0.6 (a.u.) gives 90% increase in mice killed	

Question Number	Answer	Additional guidance	Mark
2(a)(ii)	1. LD_{50} of $\operatorname{drug} \mathbf{A}$ is lower / lower concentration of $\operatorname{drug} \mathbf{A}$ needed to kill 50% of the mice / eq ; 2. by 0.09 (a.u.) ;	1. ACCEPT converse 1. ACCEPT if both LD_{50} values quoted Drug \mathbf{A} is $0.42 / 0.43$ and \mathbf{B} is 0.52 /0.53 2. ACCEPT by $0.11 / 0.10 / 0.1$ (a.u.)	(2)

Question Number	Answer	Additional guidance	Mark
2(b)	1. (phase I) drug tested on (small number of) healthy \{people / volunteers\};	(fewer than 100) 2. (phase II) drug tested on small number of patients (with disease) ;	2. ACCEPT 100-300 if no written description 2. ACCEPT slightly larger
3. (phase III) drug tested on large number of patients (with disease) ; 4. reference to \{placebo / double blind trial\} (during phase II / phase III);	3. ACCEPT ≥ 1000 if no written description		(4)

Question Number	Answer	Additional guidance	Mark
3(a)	1. prokaryotic; 2. Archaea; 3. Bacteria ; 4. molecular phylogeny ;	MP2 and MP3 Archaea and Bacteria can be either way around ACCEPT phonetic spellings 1. ACCEPT prokaryote, prokaryota 2.ACCEPT Archaebacteria 2. ACCEPT spellings Archa, Archae, Archea, Arche but NOT arachnae 3.ACCEPT Eubacteria 4. IGNORE taxonomy	(4)

Question Number	Answer			Additional guidance	Mark
3(b)	Name of organelle	Structure of organelle	Role of organelle	ACCEPT plural word for the names	
	centrioles	Any two of: 1. pair of \{ cylinders / tubes / hollow rods \} ; 2. at right angles ; 3. 9 triplets of (micro)tubules ;	formation of spindle fibres	1. NOT tubules 2.ACCEPT perpendicular / 90° 3. NOT $9+2$ 3. ACCEPT $9+0$	
	mitochondrion ;	1. inner membrane folded to form cristae 2. circular DNA found in the matrix	aerobic respiration		
	Golgi apparatus	Any two of: 1. stacks of cisternae / eq ; 2. (cisternae) have curved shape ; 3. vesicles;	modification of \{ protein / lipid \} / eq ;	Structure: mp1 ACCEPT stack of \{ flattened sacs / fluidfilled sacs \} Role: ACCEPT production of \{ lipoprotein / glycoprotein / lysosomes \}	
	ribosome ;	1. consists of two subunits 2. made of protein and RNA	Translation		
	lysosome ;	1. surrounded by a single membrane 2. contains hydrolytic enzymes	destruction of bacteria	ACCEPT lysozome but NOT lysozyme	(8)

Question Number	Answer	Additional guidance	Mark
4(a)	1. group of cells;	1.ACCEPT similar cells 2. ACCEPT description of a function e.g. (all) involved in support / transport (of water / mineral ions / eq)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{4 (b) (i)}$	(acetic / ethanoic / propionic) orcein / toluidine (blue);	ACCEPT phonetic spellings ACCEPT Schiff's (reagent) / Feulgen's (stain) / (aceto) carmine / methylene blue NOT iodine	

Question Number	Answer	Mark
$\mathbf{4 (\mathbf { b }) (\mathbf { i i) }}$	The only correct answer is \mathbf{D}	
	\mathbf{A} is incorrect because \mathbf{R} is metaphase which comes before \mathbf{P} which is anaphase \mathbf{B} is incorrect because \mathbf{Q} is telophase which comes after \mathbf{P} which is anaphase \mathbf{C} is incorrect because \mathbf{R} is metaphase which comes before \mathbf{P} which is anaphase	

Question Number	Answer	Additional guidance	Mark
4(b) (iii)	1. chromosome drawn showing two chromatids ; 2. one/both of the chromatids labelled correctly ; 3. centromere labelled correctly ;	e.g. 1. ACCEPT simple line drawings and ignore any drawings of nuclear spindle. 1.IGNORE labels when assessing mp1 2. and 3. ACCEPT phonetic spellings 2. and 3. IGNORE any other labels	(3)

Question Number	Answer	Additional guidance	Mark
*5	QWC - Spelling of technical terms must be correct and answer must be organised in a logical sequence 1. reference to natural selection ; 2. variations (between tortoises) due to mutations ; 3. individuals with advantageous alleles \{ survive / reproduce / pass these alleles on to offspring \} ; 4. idea that \{ climate / food availability / environment \} are different selection pressures (on different islands) ; 5. reference to geographical isolation ; 6. idea that the saddleback is smaller as food is limited ; 7. idea that saddleback tortoise has long neck for reaching food; 8. so saddleback can survive (in dry habitat) where there is limited food near the ground ; 9. saddleback outcompeted by the larger domed tortoise where there is a lot of vegetation near the ground ;	QWC emphasis is clarity of expression 3. NOT genes 6. to 9. ACCEPT converse for domed tortoise 6. e.g. idea that domed can grow larger as more food available 7. e.g. idea that domed can only reach food near ground as has a short neck 8. e.g. so domed can't survive where there is limited food near ground 9. e.g. domed outcompeted by saddleback (in dry habitat) where there is little vegetation near the ground	(6)

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (a)}$	1. to \{generate / increase / eq\} genetic variation (within a species) ;		
2. idea of resulting in increased survival chances (of the species) ; 3. to produce haploid \{nuclei / cells\} / halve the chromosome number ;	3. ACCEPT to produce gametes	(2)	

Question Number	Answer	Mark
$\mathbf{6 (b) (\mathbf { i })}$	The only correct answer is \mathbf{D}	
	\mathbf{A} is incorrect because all the nuclei are haploid	
	\mathbf{B} is incorrect because \mathbf{P} is also haploid	
\mathbf{C} is incorrect because \mathbf{S} is also haploid	(1)	

Question Number	Answer	Mark
$\mathbf{6 (b) (i i)}$	The only correct answer is B	
	\mathbf{A} is incorrect because the pollen tube grows through the style to reach the micropyle	
	\mathbf{C} is incorrect because the pollen lands on the stigma and then grows through the style	
\mathbf{D} is incorrect because the pollen lands on the stigma and then grows through the style	(1)	

Question Number	Answer	Additional guidance	Mark
6(b)(iii)	1. (mitosis in nucleus \mathbf{P}) results in two \{haploid / male\} nuclei ; 2. reference to double fertilisation ; 3. one (male) nucleus is needed to fuse with the \{female gamete / egg cell / nucleus S /female nucleus\} to form the zygote ; 4. one (male) nucleus is needed to fuse with \{the other / polar / R\} nuclei to form (primary) endosperm (nucleus) ;	ACCEPT male gametes as eq to male nuclei throughout 3. ACCEPT fertilise as eq to fuse with 4. NOT polar bodies	(3)

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (c) (i)}$	$2.22\left(\mu \mathrm{~m} \mathrm{hr}^{-1}\right) ;$	ACCEPT $2 / 2.0 / 2.2 / 2.2$ recurring	(1)

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{6 (c) (i i)} & \text { The only correct answer is B } & \\ & \mathbf{A} \text { is incorrect because increasing the range will not help } \\ & \mathbf{C} \text { is incorrect because the maximum value could be lower than } 7 \text { or higher than } 9 \\ \mathbf{D} \text { is incorrect because maximum value could be below } 8\end{array}\right]$

Question	Answer					Additional guidance	Mark
7（a）	feature	starch only	cellulose only	both starch and cellulose	found in neither starch nor cellulose		
	consists of two different polysaccharides	区					
	made from β glucose		区				
	1，4－glycosidic bonds present			区			
	hydrogen bonds between molecules			区			（4）

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (b)}$	1. bioplastics are \{sustainable / will not run out\} because \{more plants can be grown / they are made from renewable materials / eq\} ;	ACCEPT converse statements	
	2. less pollution because bioplastics \{reduce the use of fossil fuels / can be decomposed / are biodegradable\} ;	2. Examples of pollution reduction: e.g. do not contribute to landfill e.g. reduce CO $_{2}$ emissions	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (c) (i)}$	1. addition of cellulose increases tensile strength;	1. NOT increasing ratio of starch: cellulose increases tensile strength	
	2. idea that \{there is little/no difference / standard deviations overlap\} between $\{100: 2.5$ and $100: 5 / 100: 10$ and $100: 15\} ;$	3. e.g. changing ratio from $100: 5$ to $100: 15$ increases tensile strength by $12.0(\mathrm{MPa})$	(3)
	3. credit correct manipulation of figures ;		

Question Number	Answer	Additional guidance	Mark
7(c)(ii)	1. idea of using all five types of plastic ; 2. of the same diameter / eq ; 3. description of apparatus set up to be used ; 4. idea of hanging masses onto each plastic ; 5. recording the mass that breaks the plastic ;	ACCEPT weight for mass throughout Answers describing using natural plant fibres should not be awarded mp1 2. ACCEPT length / width / crosssectional area 3. e.g. clamping plastic between two clamp stands e.g. suspending plastic from forcemeter / spring balance or using a pulley 5. ACCEPT recording heaviest mass that does not break the plastic 5.IGNORE recording the tensile strength 6. ACCEPT to improve validity	(4)

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (a)}$		Correct answer alone gains both marks 1. ACCEPT $2493 \div 11 \times 100$ OR $2493 \div 0.11$ OR $2493 \div 11$	
	1. $1 \%=(2493 \div 11=) 226.64 ;$	2. DO NOT ACCEPT answers with decimal places 2. ACCEPT 22663	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (\mathbf { i })}$	1. so that germination will not take place ;	1. ACCEPT to reduce germination 1. ACCEPT so seeds remain dormant	
	2. so that fungi do not grow / eq ; 3. to reduce enzyme activity ; 4. so that seeds will remain viable / eq ; bacteria / microorganisms / mould / pathogens 3. ACCEPT to reduce metabolic activity		

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (\text { (i) }}$	1. to check seed viability / eq ;	1. e.g. to check if seed / embryo is alive 1. IGNORE to see if seeds germinate	
	2. to grow plants to collect more seeds / to find out if more seeds need to be collected ;		(2)

Question Number	Answer	Additional guidance	Mark
8(c)(ii)	1. idea that a suitable temperature is between $5^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C} ;$ 2. idea that they would know that different species of plant need different storage temperatures ;	2. ACCEPT idea that they can find which species can be stored together / have to be stored separately	
3. idea they can find the optimum (storage) temperature for a species ;	3. ACCEPT highest germination 4. idea of knowing the likely \% germination allows scientists to decide how many seeds need to be stored ;	5. idea that they can save money by not keeping the temperature lower than necessary;	(3)

