| Surname                                      | Other n       | ames             |
|----------------------------------------------|---------------|------------------|
| Pearson Edexcel International Advanced Level | Centre Number | Candidate Number |
| <b>Biology</b> International Advar           | seed Lovel    |                  |
| Unit 4: Energy, Envi                         |               | obiology and     |
| Unit 4: Energy, Envi                         | ronment, Micr | Paper Reference  |
| Unit 4: Energy, Envi                         | ronment, Micr |                  |

#### Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
  Show all your working in calculations and include units where

## Information

appropriate.

- The total mark for this paper is 90.
- The marks for each question are shown in brackets
  use this as a quide as to how much time to spend on each question.
- In questions marked with an asterisk (\*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.

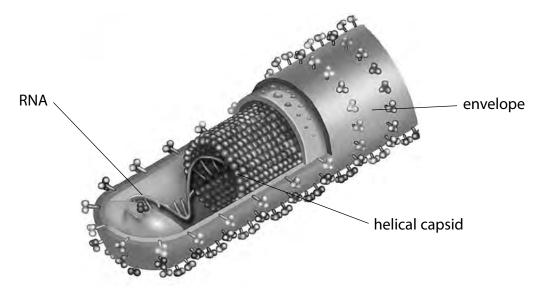
#### **Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

\$58690A ©2018 Pearson Education Ltd. 1/1/1/1/






#### **Answer ALL questions.**

#### Write your answers in the spaces provided.

Some questions must be answered with a cross in a box  $\boxtimes$ . If you change your mind about an answer, put a line through the box  $\boxtimes$  and then mark your new answer with a cross  $\boxtimes$ .

1 (a) The diagram shows the structure of an Ebola virus.



© Science History Images / Alamy Stock Photo

(i) Which of the following viruses contain the same type of nucleic acid as the Ebola virus?

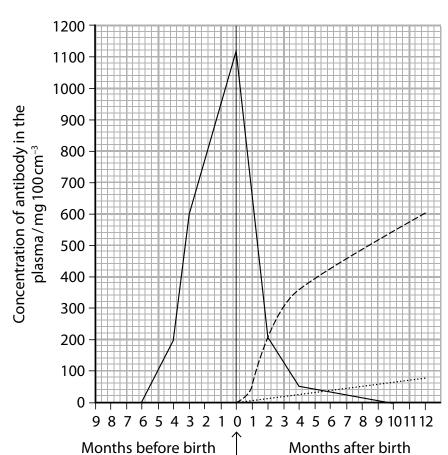
(1)

- A human immunodeficiency virus (HIV) only
- B human immunodeficiency virus (HIV) and tobacco mosaic virus (TMV)
- $\square$  **C** lambda phage ( $\lambda$  phage) only
- $\square$  **D** lambda phage ( $\lambda$  phage) and tobacco mosaic virus (TMV)
- (ii) Which of the following viruses have a helical capsid?

(1)

- **A** human immunodeficiency virus (HIV) and lambda phage (λ phage)
- **B** human immunodeficiency virus (HIV) only
- $\square$  **C** lambda phage ( $\lambda$  phage) and tobacco mosaic virus (TMV)
- **D** tobacco mosaic virus (TMV) only

| (iii) What type of molecule makes up the capsid of a virus?                          | (1)                |
|--------------------------------------------------------------------------------------|--------------------|
| ■ A carbohydrate                                                                     | (-7                |
| ■ B lipid                                                                            |                    |
| C nucleic acid                                                                       |                    |
| ■ D protein                                                                          |                    |
| (iv) The volume of an Ebola virus is approximately $7.76 \times 10^4  \text{nm}^3$ . |                    |
| Tobacco mosaic virus (TMV) is approximately 300 nm long and 8                        | 30 nm in diameter. |
| Calculate how many times larger Ebola virus is than TMV.                             |                    |
| Assume that TMV is a cylinder in shape.                                              |                    |
| The volume of a cylinder is calculated using the formula                             |                    |
| $V = \pi r^2 I$                                                                      |                    |
|                                                                                      | (2)                |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      | Answer             |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |
|                                                                                      |                    |


| (b) Human immunodeficiency virus (HIV) contains two enzymes th most other types of virus. | at are <b>not</b> found in |
|-------------------------------------------------------------------------------------------|----------------------------|
| (i) Name these two enzymes.                                                               | (1)                        |
| (ii) Explain why HIV contains these two enzymes.                                          | (3)                        |
|                                                                                           |                            |
|                                                                                           |                            |
|                                                                                           |                            |
| (Total for                                                                                | Question 1 = 9 marks)      |
|                                                                                           |                            |
|                                                                                           |                            |

- **2** Antibodies play an important role in the immune response.
  - (a) Explain the importance of antibodies.

(4)

(b) There are different classes of antibody, including IgA, IgG and IgM.

The graph shows the changes in the concentration of IgA and IgG in the plasma of a fetus before birth and in a child after birth.



Birth

### Key

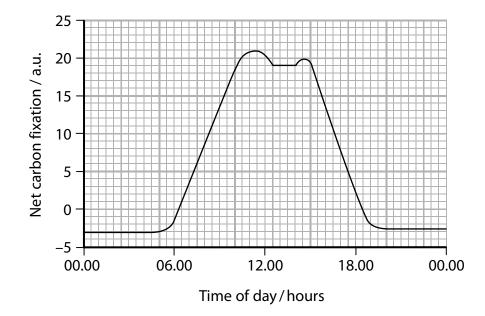
IgG produced by the mother

| ----

IgG produced by the child

.....

IgA produced by the mother

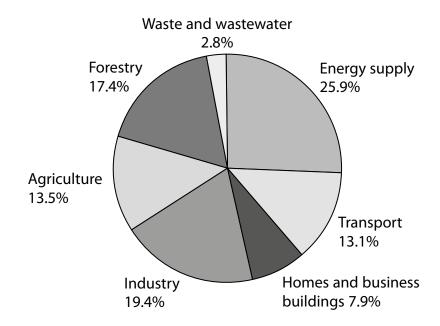

| (i) Describe the changes in the classes of antibody in a fetus before birth and in child after birth. Use the information in the graph to support your answer. | a<br>(3) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
| (ii) Which type of immunity explains the presence of IgA?                                                                                                      | (1)      |
| ☑ A artificial active                                                                                                                                          |          |
| ■ B artificial passive                                                                                                                                         |          |
| C natural active                                                                                                                                               |          |
| ■ D natural passive                                                                                                                                            |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                |          |

| (iii) Suggest why the concentration of antibodies is less in a child 12 me birth than in an adult. | onths after     |
|----------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                    | (2)             |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
|                                                                                                    |                 |
| (Total for Question                                                                                | n 2 = 10 marks) |
|                                                                                                    |                 |

**3** (a) Explain the role of the products of the light-dependent reactions of photosynthesis in the Calvin cycle.

(3)

(b) The graph shows the net carbon fixation in a plant over a period of 24 hours.




| (i) Calculate the rate of decrease of net carbon fixation at 1200 hours.                                 |     |
|----------------------------------------------------------------------------------------------------------|-----|
| Include units in your answer.                                                                            |     |
| merade arms in your answer.                                                                              | (3) |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
| Answer                                                                                                   |     |
| (ii) Suggest an explanation for the decrease in net carbon fixation between 12 00 hours and 13 00 hours. |     |
| 12 00 Hours and 13 00 Hours.                                                                             | (3) |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |
|                                                                                                          |     |

| (iii) Suggest why the net carbon fixation was negative before 05 00 hours a after 1900 hours. | and         |
|-----------------------------------------------------------------------------------------------|-------------|
|                                                                                               | (3)         |
|                                                                                               |             |
|                                                                                               |             |
|                                                                                               |             |
|                                                                                               |             |
|                                                                                               |             |
|                                                                                               |             |
|                                                                                               |             |
|                                                                                               |             |
| (Total for Question 3                                                                         | = 12 marks) |

| (a) State what is me                  | eant by the term anthropogenic climate cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inge. |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a) State What Is the                 | and by the term and opogetile cilinate cili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| (b) (i) Name <b>two</b> g             | reenhouse gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| , , , , , , , , , , , , , , , , , , , | , and the second | (1)   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| (ii) Explain the r                    | ole of greenhouse gases in climate change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|                                       | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2)   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

\*(c) The pie chart shows the relative contribution of different sources of greenhouse gas emissions.



| Explain the relative contribution of each source information in the pie chart and your own know | rledge to support your answer. | (6)       |
|-------------------------------------------------------------------------------------------------|--------------------------------|-----------|
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 | (Total for Question 4 = 11     | marks)    |
|                                                                                                 | (Total for Question 1 – 11)    | iliarity, |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |
|                                                                                                 |                                |           |

5 Some disorders are caused by mutations in the mitochondrial DNA and can be inherited.

Three-parent embryos have been developed to prevent the inheritance of these disorders.

Diagram 1 shows how three-parent embryos are made.

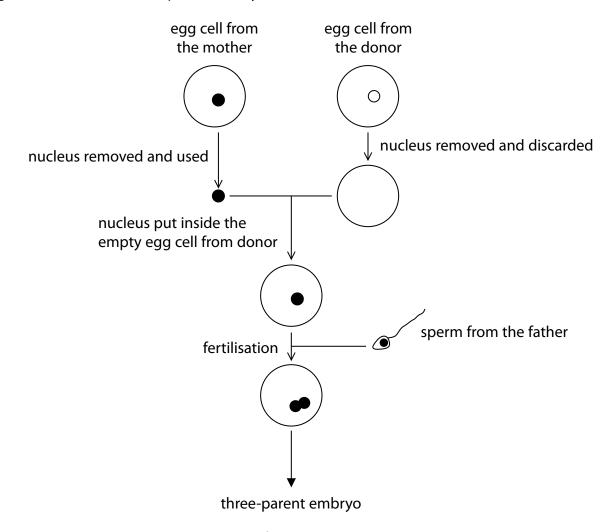
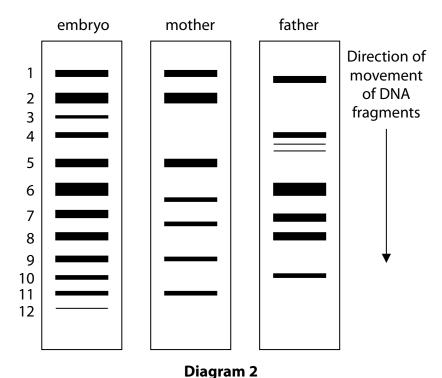



Diagram 1

(a) The cells in the three-parent embryo are totipotent stem cells.

State what is meant by the term **totipotent stem cells**.


|  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> | <br> |
|--|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|------|------|
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |
|  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> | <br> |
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |
|  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | <br> |      |
|  |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |      |      |

(2)

(1)

(b) Diagram 2 shows the results of separating the DNA from the three-parent embryo, the mother and the father, using gel electrophoresis.

The bands from the DNA of the embryo are labelled from 1 to 12.



- (i) Which of the following is the reason for the movement of the DNA fragments?
- **A** negatively-charged fragments move towards the negative end of the gel
- **C** positively-charged fragments move towards the negative end of the gel
- positively-charged fragments move towards the positive end of the gel

| (ii)      | Wł    | nich band on the gel contains the heaviest DNA fragments?                                                               | (1)   |
|-----------|-------|-------------------------------------------------------------------------------------------------------------------------|-------|
| X         | A     | 1                                                                                                                       |       |
| X         | В     | 3                                                                                                                       |       |
| X         | C     | 6                                                                                                                       |       |
| X         | D     | 9                                                                                                                       |       |
| *(iii)    |       | plain the banding pattern of this three-parent embryo. Use information in agram 1 and Diagram 2 to support your answer. | (6)   |
|           |       |                                                                                                                         |       |
| <br>••••• |       |                                                                                                                         |       |
| <br>      |       |                                                                                                                         |       |
| <br>••••• |       |                                                                                                                         |       |
| <br>      |       |                                                                                                                         |       |
|           |       |                                                                                                                         |       |
| <br>••••• | ••••• |                                                                                                                         |       |
| <br>      |       |                                                                                                                         |       |
| <br>      |       | (Total for Question 5 = 10 ma                                                                                           | rlcc) |
|           |       | ( Total for Question 3 = 10 ma                                                                                          | i N3/ |

(1)

**6** Tuberculosis is a disease caused by infection with *Mycobacterium tuberculosis*.

The cell wall of *M. tuberculosis* is different from most other types of bacteria as it contains different types of mycolic acid.

Mycolic acid protects the bacteria from lysozyme action, dehydration and polar (hydrophilic) antibiotics.

The diagram shows part of one type of mycolic acid.

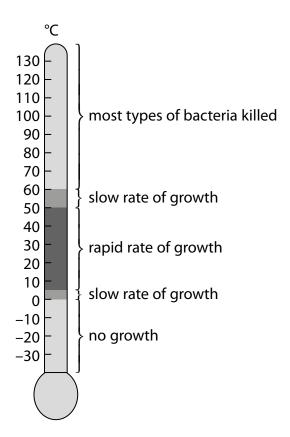
- (a) What type of molecule is mycolic acid?
- A carbohydrate
- B fatty acid
- ☑ C nucleic acid
- **D** polypeptide

(b) Treatment for tuberculosis involves the use of different types of antibiotic, taken over several months.

The table gives details of four antibiotics used to treat tuberculosis.

| Antibiotic | Mode of action                                                 |
|------------|----------------------------------------------------------------|
| E          | disrupts the formation of the cell wall                        |
| J          | inhibits the synthesis of mycolic acids                        |
| Р          | activates an enzyme that inhibits the synthesis of fatty acids |
| R          | binds to the active site of RNA polymerase                     |

| <br>(i) | Suggest why antibiotic E is effective only when <i>M. tuberculosis</i> bacteria are dividing. | (1) |
|---------|-----------------------------------------------------------------------------------------------|-----|
| (ii)    | Explain why antibiotic J could result in an increase in antigen presentation by macrophages.  | (2) |
|         |                                                                                               |     |
| <br>    |                                                                                               |     |
| <br>    |                                                                                               |     |
| <br>    |                                                                                               |     |


| (iii) Explain how antibiotic P could affect <i>M. tuberculosis</i> . | (3) |
|----------------------------------------------------------------------|-----|
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
| (iv) Explain how antibiotic R could affect <i>M. tuberculosis</i> .  |     |
| (iv) Explain flow antibiotic is could affect wil tuberculosis.       | (3) |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |
|                                                                      |     |

| (v) Explain why taking a combination increase the resistance of <i>M. tube</i> | n of antibiotion | cs for severa<br>ese antibioti | l months coι<br>cs. |             |
|--------------------------------------------------------------------------------|------------------|--------------------------------|---------------------|-------------|
|                                                                                |                  |                                |                     | (2)         |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  | (Total for                     | Question 6          | = 12 marks) |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |
|                                                                                |                  |                                |                     |             |

(4)

7 Temperature affects the rate of growth of bacteria.

The diagram shows some information about the growth of bacteria in different ranges of temperature.



(a) Explain why most types of bacteria are killed at temperatures above 60 °C, but bacteria can grow slowly in a temperature range of 50 °C to 60 °C.

(b) (i) The growth rate constant will be at its highest in the temperature range of  $5\,^{\circ}\text{C}$  to  $50\,^{\circ}\text{C}$ .

Calculate the growth rate constant (k) of bacteria that have increased from  $5 \times 10^3$  cells per cm<sup>3</sup> to  $1.3 \times 10^5$  cells per cm<sup>3</sup> in 4 hours.

(3)

$$k = \frac{\log_{10} N_{t} - \log_{10} N_{0}}{0.301 \times t}$$

Answer.....

(ii) The formula used to calculate the growth rate constant can only be applied to one phase of bacterial growth.

To which phase of bacterial growth can the formula be applied?

(1)

- **A** death
- B exponential
- **D** stationary

| 0°C and 5°C.                               | (3)                                                |
|--------------------------------------------|----------------------------------------------------|
|                                            | (0)                                                |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
|                                            |                                                    |
| (ii) Explain why there is no growth        | n of bacteria in a freezer at a temperature of     |
| (ii) Explain why there is no growth −18°C. |                                                    |
| (ii) Explain why there is no growth −18°C. | n of bacteria in a freezer at a temperature of (2) |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |
| (ii) Explain why there is no growth –18°C. |                                                    |

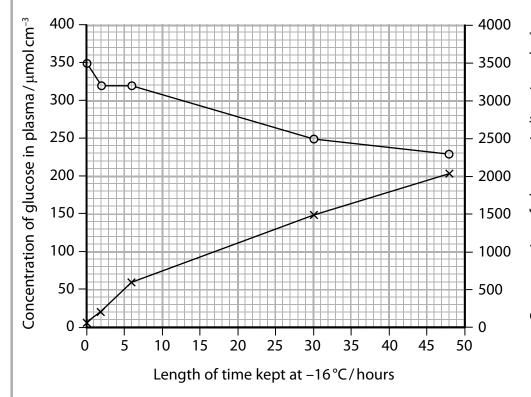
### 8 The photograph shows a wood frog.

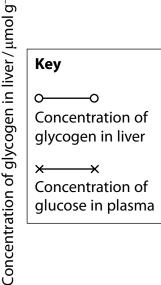


Source: http://www.borealforest.org/reptiles/wood\_frog.htm

Wood frogs are found throughout North America.

The shaded areas on the map shows the distribution of wood frogs in North America.


Information is also given about the climate in two areas, Alaska and Ohio.




Source: https://answersingenesis.org/natural-selection/adaptation/the-secret-lives-of-frozen-frogs/

(a) Scientists kept a wood frog from Alaska at  $-16\,^{\circ}$ C. The scientists measured the concentration of glycogen in the liver and the concentration of glucose in the plasma over a period of 48 hours.

The graph shows the results.





(i) How many of the following statements describe glycogen?

(1)

- 1. The monomer is  $\beta$  glucose
- 2. It is made from two different types of polymer
- 3. There are 1,4 and 1,6 glycosidic bonds
- 4. It is insoluble
- $\mathbf{X}$  A 1
- **B** 2
- 🗙 **D** 4

| (ii) | Explain the changes in the concentration of glycogen and glucose. Use the information in the graph to support your answer. | (2) |
|------|----------------------------------------------------------------------------------------------------------------------------|-----|
| <br> |                                                                                                                            |     |
|      |                                                                                                                            |     |
| <br> |                                                                                                                            |     |

(b) The scientists found that wood frogs from Alaska had higher concentrations of glucose in their plasma than wood frogs from Ohio.

The scientists also found that the wood frogs from Alaska had higher concentrations of other solutes, such as urea, in their plasma.

The table shows the mean concentration of urea in the plasma of these frogs. The table also shows the standard deviations.

| Type of wood frogs | Mean concentration of urea in plasma / μmol cm <sup>-3</sup> | Standard deviation |
|--------------------|--------------------------------------------------------------|--------------------|
| from Alaska        | 106                                                          | 10                 |
| from Ohio          | 28                                                           | 5                  |

(i) Calculate the percentage difference in the mean concentration of urea in the plasma of the wood frogs from Alaska compared with the wood frogs from Ohio.

(1)

Answer.....%

| the data for the wood frogs from Ohio.                                            | (2) |
|-----------------------------------------------------------------------------------|-----|
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
| (iii) Explain why a high concentration of solutes in the plasma could protect the |     |
| wood frogs from Alaska in very cold temperatures.                                 | (2) |
|                                                                                   | (=) |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |
|                                                                                   |     |

| <ul> <li>Explain how these wood frogs evolve<br/>North America.</li> </ul> | a to occupy different fliches in  |
|----------------------------------------------------------------------------|-----------------------------------|
|                                                                            | (5)                               |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            |                                   |
|                                                                            | (Total for Question 8 = 13 marks) |
|                                                                            | TOTAL FOR PAPER = 90 MARKS        |

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.