

Edexcel B Biology A-Level Core Practical 1

Investigate a factor affecting the initial rate of reaction

🕟 www.pmt.education

▶ Image: Second Second

The rate of reaction of an enzyme-controlled reaction is influenced by different factors: **the temperature, pH, concentration of the substrate, and the concentration of the enzyme.** The effect of each of these can be determined by **changing a single variable** and measuring its effect on the rate of reaction. It is important to **keep all other variables constant** so that they do not influence the results. Initial rate of reaction is measured because **rate of an enzyme-controlled reaction is high**, because enzymes act as biological catalysts, so concentration of reactants changes rapidly. The initial rate is the only point during the reaction when **concentration of reactants and products is known**.

Equipment

- Powdered skimmed milk suspension (2%)
- Trypsin solution (1%)
- 6 test tubes and holder
- Stop clock
- Two 5cm³ pipettes
- Goggles
- Colorimeter
- 2 Cuvettes
- Distilled water

Method

- 1. **Dilute** stock solution of trypsin with distilled water to produce solutions with concentrations of 0.2%, 0.4%, 0.6% and 0.8%.
- Make a control by adding 2cm³ of trypsin solution and 2cm³ of distilled water. Use this to set the colorimeter absorbance to zero.
- 2. To another cuvette, add 2cm³ of milk suspension and 2cm³ of the stock trypsin solution. Mix, place in the colorimeter and **measure absorbance at 15 second intervals for 5 minutes**.

3. Rinse the cuvette with distilled water. Repeat step 3 at all trypsin

Rate of reaction =
$$\frac{1}{mean time}$$

concentrations.

🕟 www.pmt.education

Risk Assessment

Hazard	Risk	Safety Precaution	In emergency	Risk Level
Broken glass	Cuts from sharp object	Take care when handling glass objects; keep away from edge of desk	Elevate cuts; apply pressure; do not remove glass from wound; seek medical assistance	Low
Hot liquids	Scalding	Handle with care; use tongs to remove boiling tubes from water bath; wear eye protection	Run burn under cold water; seek medical assistance	Low
Enzymes	Allergies	Avoid contact with skin/eyes; wear eye protection	Seek assistance	Low

Graph

• Plot a graph of rate of reaction against temperature.

Conclusion

- Milk contains a white protein called **casein** which, when broken down, causes the milk to turn **colourless**. **Trypsin** is a **protease enzyme** which **hydrolyses the casein**.
- As concentration of trypsin increases, the **number of enzyme-substrate complexes forming also increases** because enzymes and substrates are more likely to collide. This means that the **rate of reaction increases** up to the optimum enzyme concentration.

▶ Image: PMTEducation

• The rate plateaus at the point where all substrates occupy an active site. Increasing the enzyme concentration won't increase rate as substrate concentration is limiting the rate.

🕟 www.pmt.education