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1 Which of the following is an expression for the first derivative with respect to x of
x3 — 5z’
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(22 + 1) and (z — 2) are factors of 223 + pz?® + ¢

What is the value of 2p + ¢ 7

A —10 \d.‘ 5‘(1) - 3131_ P,I,‘L-l-%

i then {\-ov (&L-\-l):) p “‘3_ =) 6-';_):43
and Fw (x-a,) =) X=4 Jf(a) =0

D%

E 3 =) f(’i -‘-"\;-t- {--e—ﬂ,:o

F 10 =) 2 = T;--_f"

and §(2) = 6+ kptt =0
=) 3= -ke-lG

= P: -Si
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Find the complete set of values of z for which

A

Q = &#H O Q

(x+4)(x+3)(1—2) >0 and (x+2)(x—2) <0

l<z<?2

—2<xr<?2

T < =2
T < —4
T < —4

—d<z<

or

or

or

Tz >1

T > 2

—3I<a<l

or z>1

Fov (x+b) (x+3) (l-l) > 0

=) xXo5-L, X>-3 and X<\

=) -32R<)

hv (xvd) (x-2) ¢o

=) XK-A and X< R
=) Our [nok fage must be

—d LX)
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—
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4 The 1%, 224 and 3¢ terms of a geometric progression are also the 15, 4" and 6
terms, respectively, of an arithmetic progression.

The sum to infinity of the geometric progression is 12.

Find the 1% term of the geometric progression.

Qeomd-ue,- Seo = N =y Q@ = 1d-lav

1 \-v
B 2 and  Qn=Qr”"
€3 22 Qn= (2 -1av)e™
E 5 Ardhmedic - Gnz ai+r(n-1)d
F 6

N Q= (\1-13, f equals Quz= Qu+3d = 13-1vs ad

<) Q2 = (l'&-lar)r"' equels O¢ = a1+ §d = 12-12r + 6ol

=2 (12-13¢ ¢ = 121 e 34 and  (12-120)r = 12-12v +5d

) [ar-lars a4l = 3d 1A% et e = 5
) d- _l,r".\, Iv -4 and d= -llr3+ la,(1+\av'-13.
S
=> Equek theme =5 - 20/x Yov-90= ~lacsAH 112
q =2 - 2ar 4+ A8v -3 = O
eomehic Q. = |2-12y
2 =7 3r3— Be'x Fr- =0
Qc= 1q -ldx 3 v
Q, = k =) (r-)) (3"" a):o

-

=) (=1 or =
W Unoww =zt =) S, doeswt Rxist.

hene r= 2 2
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3
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The curve S has equation

y=pr’+6x—q N, |
SO
where p and ¢ are constants. |
i
S has a line of symmetry at z = —}1 and touches the z-axis at exactly one point.
. ' i L
What is the value of p + 8¢ K +W"'“5 foint b- hac o

W howe o forakolo. with one real Mot

Bos ol b '}‘Wﬁns Po;\ﬂb has X - Cordinal T = ";.
C 21 b‘L .
D 2 “hoe s 6 Wp)(-g) = 36+hprco
=) = -
E 38 Pe q
=? J= PxvCx -2
=) V= P(x"‘-e_cic__g;)
S
i 8
= 3 Q U}
b P (X+ ?) N ’_1-_ 2
Jrreie e Remember we fip the
,(hu\ _ﬁ..—,-l =) p;la 573v\ {o 3‘*’ cuy +u.m‘u:5
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6 Find the maximum value of the function

Ld‘ u= Su so we l\aww.
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7 Given that

and
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93z _ g(y+3)

16w+

(z+1)
4 8(y+3)

what is the value of x +y?

B -22
C -15
D —-14
E 11
F —-10

n(8) = nu
=hind

In®):=1n2°
= 31n(@)

X

a - %('3 +3)
(3 = Wn(3 >)

3&|n@0:(b+3)"&3)
dx = (5-!-'5) In(3) =y 3x= (3 1—3)&3

In(2
( ) X = B+3

Xel TRad => ¥=x-3
L‘ = 83-&3

(xx)In(s) = (9 +1) WnQe) - (H+3)In(3)
(e In(k) = Lin(2)(9+1) - 2In(Q(v+3)

X+0) () = @y« Wn () - 2n@) s - In(2)

MBx = @Y - 3@y -321n(@)

2 In@)x = Q@)Y -71n(2)
=) 9= Qx4

=Y X-3:= dx+7

=9 -0 = Rk =) b-’—' -10-3 = -13
=7 X+%:z =-\0-13= =233
—
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The function f is defined for all real z as

f(2) = (p— 2)(x +2)

Find the complete set of values of p for which the maximum value of f(x) is

less than 4.
@-2) (ctd)
FO = px+ ap-x"-2

<4
~
2
"

A —2—-4/2<p<—2+4V2

B —2-2V2<p<—2+2V2

C _2\/5<p<2\/5 }(‘)'—' P‘a1’9~ =C
=) dx=P-4d
E —4<p<0 = k= -P—;:—Q-

F 2<p<?2

Smu
=7 Pxe« 39-11— ar < Yy

2? P(P'a) + ap_ (P-a)l_ a(p-a
& h —a‘)

2
=9 P+:P-h*&§|-§

=2 P‘L-t-hp-"\ A
=) Prlp-12<o

= (P+&)(f-2) ¢ o

=) Pe-6 Pea
=2 -6e¢p e
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0,

The quadratic expression z? — 14x + 9 factorises as (z — )(x — 3), where o and f3
are positive real numbers. @

Which quadratic expression can be factorised as (z — /a')(z —/B)?

A 22— \/10z +3 EXFM% Vs W:

B 2% — 14z +3

D o - (1Boe 4 xR= o - lleac 9

@ o - (WeTB)xs M

E 22— 176z + 81

F 2?4196z + 81

By ) we can e =x<B=lt @
J «B=9 €

So bﬂ@ m—:w

W =3 [(we cepd-3
s fB ase both
FOSWV\WWM

N(’)w ({:‘ _\.yg):o(fﬁl-?g@
= \Ly +2¥&§é
= |4+ 2x3=20

S0 @ \)Q/CDMLO ‘:)(‘_7—-&092*5
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The following sequence of transformations is applied to the curve y = 42
1. Translation by < s )
- 4 (x*-6x+)-5
2. Reflection in the x-axis
Wy ~ A X+36 -5
3. Stretch parallel to the z-axis with scale factor 2 \41‘\'— pUR SR
What is the equation of the resulting curve? '3 = hx
v
Q@’ + 122 — 31 I h(x-3) +S
=9 - L3
B y=—2?+12z—41 Jd= b - 3hx +3)
_ .2 2
C y= z°+12z+ 31 ) Y- -(hx-—).ks.+8|)
D y= 2>+ 12x+41 = v
7 Y= ~hx+2ux-2l
E y= 1622+ 48z — 31
3- b = __L,(L )’\. .
F y= 1622 + 487 — 41 2x) + (%) -3|
G y= 162% —48z +31 UNE “hxaxs g - 3)
H y= 1622 — 48z + 41 =) _ 2+
! 3= -x¥)ax-3\
?
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11 The quadratic function shown passes through (2,0) and (¢, 0), where ¢ > 2.

Y

What is the value of ¢ such that the area of region R equals the area of region S7
NG Suer ook |b2,ochuak\;nwn be wnktn as
’ Y= k (9c-g,) (5¢ -2) o Note bk K wilk slokh

18
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9,
] (:x-qv)(oc—ZMvcso (‘)ewube e ouea bk O QNA q,
0 wll b O)

o aQ &w »

% | .
JO xz‘ (q,’rz)‘JCfZa'd“ = §"3'z"(q,"2]1 f?tvc-]: = O
- - ¢[Y of’-f u'z <0
So q’: 6
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How many real solutions are there to the equation

where z is in radians?

E 4
F 5

G infinitely many

3cosx = /7
Y = L0osx has moximum (foints o Y=3.

AWS Meons thab it will intersect
With X wabil Vx> 3
=) X 29

one Per;oel. .é‘ 3oFL  Joed ‘From Gt al.

and we haw fhakt @ 2T D9 5y fwsk but
AMN>9 5 hwe

=) fhen, Wit be R Peinis of intersection
buueen  dosx and (X n X:0->am
and  then one 'Fudhw intedectinn  behueen
M and 3 => 3

) We can S this in e ghst.

S
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13  Find the coefficient of z?y* in the expansion of (1 + x + y?)”

A6 ld W= le+Xx and Hen W haw (U.+bt)?

S WIN R W NN G IO A R
D 35 (D \Lz(‘éz)u r(g) Ui(b")s*—(Z)U(‘f)ci- (’3)(31)"-
E 105

F), 5t
(a)“ (9 = (3) @ws = qGen)’s”
= Now wt do o Sepemie binomial 2xfansion o (e’
K3 . .
o ¥ WMl ccowr for - (g)x"\3’= lze
=) alﬁlOI‘Lbh =) alO'xmol'

=) 110 S H)p, C&P‘P‘“e"‘l‘

—
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The area enclosed between the line y = ma and the curve y = 22 is 6.

Y

What is the value of m?

V3
V6

o aQ w »

F 2V6

N

J=mx

16

AN
? X

3
mx = X
m= x°
=5 x= {m
ond X:=oO.

So, cuv limits
oR. O omd M.

/)‘ he ovea s equsl
blow ond Obew
X-axis Jo we Con
inkgate fem o o
buk we haf tht

Qreon.



15  Find the positive difference between the two real values of x for which

1\ 2
(log, )" + 12 <log2 (x)) —-20=0

L 2
logo @) + 12loga(x) - 64 =0
B 16 Ahen [k W =loga(x)

=) lxha»\il.:'-Gh:o omd leb Vzu®

A 4 =2

D 7
' =) V' -€h=0 =5 vzl omk Ve - 16
E 2 _s Nu wont b
F 27 =2 Ue Tw Yeal => ianm.
16
= =z xa

=7 loS.,_(m)=D. Qnd 1032(1)——-&

-
x:at xX= 2
=) X=h X = _‘):
D k= 2
——
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16  The circle C} has equation (z +2)>+ (y —1)> =3
The circle Cy has equation (z —4)* + (y — 1)? =3
The straight line [ is a tangent to both C; and Cs and has positive gradient.
The acute angle between [ and the z-axis is 6

Find the value of tan @

AL §

B 2 C1 / G2

c £ a o)

D V2 B W / 1 \ S

x

¢ ol Logths  AB
V3 To W Izme we W

wd  BO, w AGO, s o ik andel . Lonfh
8O, & &OMWO/-W. Lmﬁ‘/\\ 910,"'6
30 l""‘zﬂ‘ 1’\02=3- Usm F'Xd\m«om on hwm?f:— A BQ,

\\_‘\I,Q+/-\Bz=3
7 4 AR =9 9 AB=36

R N ¥ '
30 MO-Q-&,ZMW
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Y=marrc

x

17  Find the complete set of values of m in terms of ¢ such that the graphs of
y = mx + ¢ and y = /= have two points of intersection.

| =3 0O Q W

0<m < 4c?

m > =

we [t Se thab fhe lower bound
will Olwuas be ma0 , 05 a.m‘.,i—hma with a
Nealhe  gradionk Wwill Obvicusly Never havt
fwe  poats o lerachion.

mxsc = Ix
*
(Mx+c) = %
mx + Amx +€ - = ©

mx + X(2m-)+c?=0

b’ lhac = (acm-.)t- h(m"')(c") = )=-khem Yo

=2 -l-lc.m)-l
2) hem < )
= m <& LI
b} vy
]
hence, oA m« K
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18 Find the number of solutions and the sum of the solutions of the equation

1 —2cos’z = |cosx |

where 0 < 2z < 180°

Number of solutions = 2

Sum of solutions = 180°

Number of solutions = 2

Number of solutions = 3

Number of solutions = 4

A

B

C

D Number of solutions = 3
E

F  Number of solutions = 4
\

- dCosx = |Cosxl

=) Qx4 Ixl-l =0
=) IXl= |-
X: 1-3x” =>
-x = l-axt =y

+ K

-ve K °

We

o W S et ‘fov 1: % and "'!-z_

- afoszx x |Cosx|-1 =0

2
dx +X-1 =0 =>

Sum of solutions = 240°
Sum of solutions = 180°
Sum of solutions = 360°
Sum of solutions = 240°

Sum of solutions = 360°

et Cosx =X

Q,“_x_lso =Y X=) ¢cv x=-

Check ow Ongwers N otiginal  Rquakion WA 1xl-1=z0
Wovk (‘Hhea v o) but

\
x-"?_cv X< -

-l and | Ao nel, So we Odcwd these.
=) Cosyr= % s| o~ guco Cosx = "= : AT
- = - '-:1 C,)J-uo
I s R T e
X = la0o°

=) X:120° and x= dho®

PMT

Buab we only how ©O¢x <l30®

=) L Valmes O Xx= 60°

and

x=J20°

=5 We how two Solwdions and theiv

20 OSum is (g0

——
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Find the lowest positive integer for which 2? — 52z — 52 is positive.

26

27

o1

o aQ w »

52

<ED

F 54

32.1- Sax-Sa Yo
(x-26)"- 3 s2>0
(x-26)- 723 >0

=) (x-26) > 729
=> x-26 )5 |78

=) X A6+ )28
X > 52.9%)...

=> fostve. for  x=53

———
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20  For how many values of a is the equation

(x —a)(2* —x+a) =0

satisfied by exactly two distinct values of x 7

A 0 (I»'OL) (Xl- I+e¢) =0 othev lishinct  x
2 will  Cccuv when
B 1 Y=  omd I-I+u=\°/ b hae = o
One dishiach
D 3 Vodug, of =2 1-u4@) = V\-ha =0
X. = -
E 4 =Y o= _:’.

F  more than 4
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