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STEP 3 Introduction

One question was attempted by well over 90% of the candidates two others by about 90%,
and a fourth by over 80%. Two questions were attempted by about half the candidates and
a furtherthree questions by about a third of the candidates. Even the other three received
attempts from a sixth of the candidates or more, meaning that eventhe least popular
guestions were markedly more popular than their counterparts in previous years.

Nearly 90% of candidates attempted no more than 7 questions.



Question 1

This was the most popular question with 94% attempting it, and it was also the most
successful with a mean mark of nearly 14/20. Apart from very occasional inaccuracies, part
(i) was always successfully done.

The first summation result in part (ii) was usually successfully done, though there was some
poor summation notation which let some candidates down. The second summation was
completed successfully by virtue of some heavy algebra or, more efficiently, by seeingthe
connection to the first result dividing the quartic by t* and comparing the quartic for the
reciprocals with that in part (i). Some candidates were penalised for not justifying their
result, having clearly worked backwards from part (iii).

Part (iii) was well done except when candidates disregarded their result from part (ii).

A lot of candidates managed to correctly interpret the implication of the curves touching
at two distinct points in terms of the roots for t and the consequent result for the product
of the four roots, but then struggled to reach the required result by algebra or poorly
justified geometric arguments.



Question 2

The fifth most popular question, being attempted by just a little over half the candidates, it
was the fourth most successful with a mean score of 9/20.

Whilst the algebra associated with this question was not difficult, the logic and
communication required was certainly too much for many students.

In part (i) it required some justification that a had to be even. Contradiction or infinite
descentcould be used but eitherway the argument had to be made clear. Claiming “this can
be continued forever” or moduli were always decreasing would eventually get to zero was
not good enough. Successful candidates were able to explain why the integer nature of the
solutions was vital to reach a contradiction.

In part (ii) many candidates were able to see that this was a similar problem to the first one,
and most observed that divisibility by three was now the key idea.

In part (iii), many candidates were able to consider the remainders when divided by 3, but
again many struggled to communicate clearly an argument leading to the final
contradiction.

By part (iv) most candidates were expectingto recreate the original equation again and the
fact that this did not happen meant some came to a dead halt. Other were either oblivious
to the issue or were bluffing their way through as a slightly more subtle argument was now
required.



Question 3

This was very popular, being attempted by over 90%, but not very successfully, with a mean
score of about 5.5/20. In part (i), candidates generally obtained a correct equation for x or
y, but then failed to properly justify the manipulation of the inequality. Whilst the quartic
was frequently correctly obtained in part (ii), there were a number of differentincorrect
assumptions or assertions made regarding the two stationary points being repeated roots or
the value of the quartic having differentsigns at the two stationary points. It was also
common that the case when c is negative was not considered. Whilst it was not uncommon
for candidates to argue incorrectly for part (iii) that the three equations were equivalent to
the curve Cin part (ii) having one stationary point, (often usingz—z = g), in contrast, a

pleasing number of candidates who made little progress in (ii) past obtaining the quartic,
approached part (iii) by simply attempting to solve the equations by elimination, earning full
or close to full marks.



Question 4

This was the fourth most popular question being attempted by more than four fifths of the
candidates, with a moderate degree of success scoring a mean of 9/20.

Part (i) suffered fromincorrect flows of logic in the inductive and base cases, as well as
failure to mention anything about not dividing by zero.

In part (ii) many ignored the instruction to use the Maclaurin series, and used de L'Hopital’s
Rule to their cost, and some ignored the higher order terms.

Part (iii) was generally well done, though the most common error was not justifying the
evaluation of the product using a geometric series in the exponent.

For part (iv), the best attempted route was to use an imaginary substitution which led to
mostly successful solutions. Some candidates attempted to prove an analogous
trigonometric identity using similar arguments to the previous parts, howeverlosing marks
for not sufficiently fleshing out the details, and some attemptedto use Osborn’s Rule, often
with insufficient justification or stating that it was being used. Once the identity was
achieved, the calculation was generally done well if the candidate progressed this far.



Question 5

This was only very slightly less popular than question 3, but it was the third most successful
with a mean of just underhalf marks.

Part (i) was well done, with a variety of methods used, the most common being by a

substitution of e*. In this part, the most frequenterrors were showing insufficient working
1+e4
14e~@

to fully justify the given result, not spotting how to simplify and incorrectly
1

1+eX

integrating [ dxto getln (1 + e%).

Part (ii) was generally found to be the hardest. There was a range of responsesto the first
requirement from concise use of the Fundamental theorem of Calculus to long, often
imprecise, paragraphs of text. Candidates attempting proof by contradiction tendedto be
more successful if they used a sketch to back up their argument. The secondresult saw
many different methods used. The most common mistakes were not showing enough
working when using a u=-x substitution, not showing that the argument can be reversed,

and using an incorrect argument such as f_aag(x) =0 - g(x) =0 (towhich g(x) = sinx
is a counterexample). Many candidates did not see the link with the first requirement of the
part. However, the final result of this part was usually done well.

Candidates found part (iii) easier than part (ii), the most common mistake was not realising
that h(x) = h(—x) holds, eventhough this was stated in the question.

Part (iv) was generally done well, with the most common mistakes being neglecting to show
that the functions satisfied the conditions in part 3 or omitting a factor of 2. A few
candidates did not use the results from the previous parts, instead using other methods,
which, as the question stated “hence”, gained no credit for this part.



Question 6

About half the candidates attempted this, but it was one of the least successful with a mean
score of one quarter marks.

Many candidates managed the opening ‘show that’ in part (i) but the limit attempt had
varying levels of success, and a common error was division by a quantity that was not
necessarily nonzero.

In part (i), diagrams were regularly lacking, often being drawn extremely small with the
most salient details omitted.

In part (a), very few indicated from where the second term in the expression for x arose.
Most attempts appealed to a diagram but did not indicate the pertinentangles.

Many formed the correct equation in (b), but a large numberforgot to account for the
periodicity; those that rememberedto do so largely did so correctly.

Many who got to (c), erroneously evaluated a 0/0 limit and then argued that the cotangent
was the answer they wanted. However, pleasingly others did spot the zeros and
manipulated the trigonometry effectively.



Question 7
More than a third attempted this, marginally more successfully than questions 3 and 6.

Many attempts were restricted to part (i). The first result was generally achieved, and whilst
the secondresult was often obtained, quite a few had difficulties doing so because they
overlooked that n was a unit vectorand what this implied. Far fewercorrectly drew and
labelled the diagram required in part (i) because they failed to appreciate the magnitudes of
the three vectors and that two were perpendicular.

Parts (ii) and (iii), when attempted, saw candidates fall into two camps. A small number
could see what both transformations were and using the considerations suggested in (ii) in
part (iii) as well, could justify their answers. However, a larger number had some idea what
the transformations might be, but oftenfailed to define them precisely, and likewise failed
to justify their conclusions, even given the approach to use in (ii).



Question 8

This was the least popular Pure question, being attempted by marginally fewerthan
guestion 7, but by more than any of the Mechanics or Probability and Statistics. The mean
mark was 6/20.

Generally, part (i) was done well and candidates used binomial expansions accurately,
manipulating their results to find the two required expressions. A few did not gain full
credit through providing insufficient working for the result given in the question.

More than half the candidates progressed no further than attempting part (ii) and, of those
who did attemptit, often stopped part of the way through, although there were some very
well-reasoned attempts. Most candidates attempting part (ii) substituted a = sec(8) into
their sin expansion but found it difficult to complete the argument to explain whyk had to
be even. Of those who got furtherand successfully managed to show the given results,
oftenthe relevance of those results was not appreciated, and some candidates attempted
to prove irrationality by quoting the irrationality of i, despite the fact that the question
stated 8 was measured in degrees. Very few candidates gained full credit for this part.
Those candidates who gained full credit in part (ii) also did well in (iii).



Question 9

The most popular of the Applied questions, with a third of candidates attempting it; it was
the second-bestscoring question on the paper with a mean score of just above half marks.

The question relied mainly on the use of conservation of momentumand Newton’s
experimentallaw of impact. Most candidates made a very good start with several scoring
full or close to full marks in the first part. The difficulties arose later when dealing with the
three-particle situation in part (ii). Very few candidates were able to take a step back and
see how this problem linked to part (i), resulting in long pages of algebraic manipulation
which were inefficient and rarely correct. A good diagram would have made the link so
much more obvious!



Question 10

Along with question 12, this was the least popular question on the paper with a sixth of
candidates trying it, and scoring one third marks, on average.

Part (i) was done well, demonstrating good use of Hooke’s law, and resolving forces. It was
failing to think about right angled triangle trigonometry that created most problems.

In part (ii), many candidates got the signs of their potential energies wrong. Of those
candidates who got to the correct expression for p most were able to find the maximum
value correctly but very few were able to explain why the physical situation resulted in a
restricted domain for the function. Showing the value of p must be 0.7 to one significant
figure was rarely done well as many candidates used known approximations to the given
surds without justifying the accuracy of these approximations.



Question 11

A quarter of the candidates attempted this, scoring a mean of one third marks. Of these,
about a quarter made little or no progress. However, there were also several very good
attempts achieving most or all of the marks available.

In part (i)(a) the majority of candidates noticed the symmetry of the distribution and were
therefore able to answer this part well, although errors such as omitting the binomial
coefficients and forgetting that X could take the value 0 were made in some cases.

In part (i)(b) most candidates were able to see that the modulus sign in the sum effectively
meant that the calculation of § should be split into two sums. However, in several cases
candidates simply observed that the given result followed from the two sums by symmetry
without sufficient justification to earn the marks.

Almost all candidates who attempted part (i)(c) were able to show the first result by
applying the definition of (2:) and then cancelling terms. A small number of candidates
argued the result by viewing the two expressions as representing different ways of counting
the same total number of things. Forthe nextpart of (i)(c) the majority of candidates split
the sum and then applied the previous result to the second term. Many candidates,
however, did not pay sufficient attention to the case wherer = 0 and ended up with an
incorrect term in the sum. Many candidates jumped straight to the given answerat this
point and therefore did not show sufficient detail to earn the remaining marks for this part.
Many of the candidates who progressed further with this part dealt with the two sums
2n—1
r—1
sum of differences, most of which then cancelled out.

2n\ _ 2n —1 .
separately, but some used the fact that ( - ) = ( ) + ( . )to rearrange into a

Candidates who had completed part (i)(c) well were able to apply the same methodsto the
case in part (ii) and this part was generally completed well, although a small number of
candidates failed to notice that the expression for the mean in terms of n had changed.



Question 12

The least popular question on the paper, it was also the least successful with a mean score
of just underone quarter marks. Many attempts did not make much progress beyondthe
first part. Candidates with a good understanding of how to calculate the expectationof a
function of a random variable generally made very good progress.

In part (i) many candidates were able to calculate the length of the chord, although many

used the cosine rule on an isosceles triangle to reach av/2 — 2 cos 260, making that
integration a little harder. A significant number of candidates who attempted this part
omitted to include the probability density function when integrating to calculate the
expectedvalue. A small number of candidates chose to consider the length of the chord as a
random variable and calculated its probability density function, from which they could then
calculate the expectedvalue. While this approach was in general successful it was a
significantly more complicated approach.

In part (ii), many candidates were able to work out the probability density function. Several
candidates struggled to find an expression for the length of the chord and so failed to make
any further progress from this point. Those that did were often able to complete the
calculation of the expected value correctly. In a small number of cases, candidates
attempted to calculate the probability density function for the length of the chord in order
to calculate the expectedvalue. In this case care needsto be taken with the limits of the
integration as the shortest possible length for such chords needsto be calculated. A good
number of candidates were able to rearrange the expected value in part (ii) into the
requested form and many were then able to complete part (iii) successfully, although a
number of attempts again omitted the probability density function and other attempts
multiplied the function by t before integrating.
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1. (i) Atintersections

(ct —a)* + (;—b)2 =72

M1

Expanding brackets, collecting like terms and multiplying throughby t? (t # 0) gives

c?t* —2act®*+ (a?+ b?> — r?)t? —2bct+ c* =0

as required. AL (2)
(ii)
\ \ i AN 2 2 2 2
;tﬂ:(;ti)_z;;titj:(%‘) _z(a +Cbz T)zé(az—b2+r2)
M1A1 dM1A1 *A1 (5)
as required.

Dividing the equation (*) by t* (again t # 0) gives
2ac 2bc  c?
2 _ 27" 24 p2_ )24 7
c : +(a*+ r?) s + o
which has roots t; and thus M1

c?t*—2bct®*+(a?+ b2 —r?)t?—2act+ c*=0

M1A1
has roots %, which is just (*) with a and b interchanged. El
Thus
=12
2 n2_ 2 2
Ztiz_cz(b a’+ r?)
i=1
from the first result of (ii). A1(5)
Alternative:-

4
Z 1 t265% 852 4ty 2852 6% + t3 28, %t % + 42t 2 8,2

- t;2 t2t,2ts2t,2

M1

_ (tatpts +tytaty + tatyty + tatity)? — 2t tytaty(tyt, + toty + tyty+ tots + tots+ taty)
(1‘L11‘L21‘L3t4-)2

M1A1A1
22 2, 2
= ;(b - a*+r?)

Al



2 _ 2, ) _ 2 2 =

asrequired. M1 *A1(2)
(iv) Touching attwo distinct points implies the roots of (*) are two pairs of coincident roots.
WLOGsay t; =tzand t, =t, . E1

then as the product of the four rootsis 1 (from (*)), t;%t,> =1 B1andtherefore t;t, = +1.

P is (ctl, ti) and P, is (ctz, ti) = i(ti,ctl) B1 which arereflections of one another in
1 2 1

y = +x respectively, and these are the mediators of the pairs of points. E1 The centre of the circle
C, lies on the mediator of P, and P, E1 which we have shownis y = +x . E1(6)

Alternative E1B1 as before

2a a
t1+t2+t3+t4:? :t1+t2:E

2b 5 5 5 5 2b
t1t2t3+t2t3t4+t3t4t1+t4t1t2=? = tl t2+t2 t1+ tl t2+t2 tlz?

b
= (tl + tz)tltz = E
M1 A1l

So tit,= Z =+1 andhence a = +b andsothe centreof C, is (a,+a ) asrequired.

M1A1

Alternative E1B1 as before

1 1 1 1 1 1

t12+t22+t32+t42=2(t12+t22)=2(—2+—2)=—2+—2+—2+—2
tZ tl tl t2 t3 t4-
M1A1

and thus CZ—Z(aZ— b? + r2)=:—2(b2— a’?+ r?)soa®?= b? and a=+b

M1A1



2. (i)

ad+2b3+4c3=0
then
a®=0—2b3—4c3 =2(-b3—4c?)
which is even. If a were odd, then a® would be odd. So, a is even.
Thus 3p where 2p = a, with p anintegerand |p| < |a|] E1

Substituting for a in the original equation, 8p3 + 2b3 + 4¢3 = 0 . Dividing by 2 and rearranging
gives b3 + 2¢3 + 4p3 = 0 which is the original equation with a,b,creplaced by b,c p.

So we may repeat the argument with, say, 2q = b and then having done so repeat the whole
argument with 2r = c. E1

Thus 3p,q,7 integerswith2r =c, |r| <|c| and p3+2q3+4r3=0.

So if there were to be a set of such integers a, b, ¢, there would be a set of such integers p, g, r with
smaller modulus satisfying the same result. This argument may be repeated ad infinitum leading to
the conclusion that thereis no least modulus set of integers which is not possible as an infinitely
decreasing sequence of positive integers cannot exist being bounded by 1. (alternatively, assumea,
b, ¢ to be smallest modulus, then we have a contradiction) E1 Hence no such a, b, c exist. *B1(4)

(ii) If 9a® +10b3 +6¢3 =0,then 10b3 = —9a3 — 6¢3 = 3(=3a® —2¢?)
Thus 10b3 is a multiple of 3 and so, b3 is a multiple of 3 and thus, b is a multiple of 3.

Thus 3q where3q = b, with g anintegerand |gq| < |b| M1 Aland 9a3 + 270¢3 + 6¢3 = 0
which can be divided by 3 to give 3a3 + 9043 + 2¢3 = 0.

It would follow that 2¢3 = —3a3 — 90¢3 = 3(—a® — 30¢g3)and so 3r where 3r = ¢, withr an
integerand |r| < |c|.

Substituting for ¢, 3a3 + 90q3 + 5473 = 0 leadingto a3 +30g3+18r3=0.

We may repeat the argument with 3p = a leading to 27p3 + 30¢3+ 1813 = 0 which on division
by 3 gives 9p3 + 10¢q3 + 673 = 0 , the original equation witha, b, c replaced by p, g, r. Al

So the conclusion can be drawn in the same way as in part (i). (‘by descent’) E1 (4)

(i) Bn+1)2=9n%2+6n+1=30Bn?+2n)+1 BlEveryintegermay be writtenas 3n—1,
3nor 3n+ 1. We have shown that the square of an integer which is not a multiple of 3 is one
more than a multiple of 3, and if aninteger is a multiple of 3 then it can be written3n and

(3n)? = 9n? = 3(3n?) which is a multiple of 3. Thus the sum of two integers can only be either a
multiple of 3, one more than a multiple of 3, or two more than a multiple of 3 depending on whether
the two integers are multiples of 3, exactly one is a multiple of 3 or neitheris a multiple of 3
respectively. Hence the result that the sum of two squares canonly be a multiple of three if each of
the integers is a multiple of three. E1

If a®? + b? = 3¢?, by the result just deduced,

dp,qwhere3p=a, 3g=>b and |p| <lal, Iq| < |b| M1



Substituting for aand b, 9p2+ 9¢2 = 3¢? so ¢? = 3(3p%+ 3g?%) meaningthat ¢? is a multiple of
3 and hence c is a multiple of 3.

So 3r where 3r = ¢, withr anintegerand |r| < |c| , and substituting for c and dividing by 9 ,

p?+ q? = 3r? which is the original with a, b ,c replaced by p, g,r. Asin (i) and (ii), the required
result follows by descent. E1(4)

(iv) (4n+1)2=16n2+8n+1=4(4n?+2n)+ 1 so, the squareof an odd integer is one more
than a multiple of four. M1 (2n)? = 4n? sothe square of an even integer is a multiple of four. M1

Thus, the sum of the squares of three non-zero integers must be 0, 1, 2 or 3 more than a multiple of
four as theintegers are all even, two even and one odd, one even and two odd, or all odd
respectively. Al

Thus if a? + b% + ¢ = 4abc, a,b ,and ¢ mustall be even. Bl

Thus 3p,q,rintegerswith2p=a ,2q=>b,2r=c,and |p| <lal, gl < |b|, Ir]l <lc| . M1
So, if a?+ b?+c? =4abc, 4p? +4q? + 4r? = 32pqr , which simplifies to

p?+ q?+1r? = 8pqr. (Alternatively, a? + b? + ¢? = 2"abc , a? + b? + c? = 2™1abc)

M1

The argument can be repeatedwith p, g, and r all being even integers with the multiple of the RHS
being a power of two greaterthan4. E1 Thus the result follows by descent. E1(8)



3. () ax? +bxy+cy?=1

Differentiating with respectto x ,

rax+by +bx 24 200 0
ax + y+ xdx‘l' Cydx_
M1

For stationary points, Z—z =0,s0 2ax+by=0
Multiplying the original equation by b?
ab?x?+ b3xy+ b?cy? = b?

Thus as by = —2ax, ab?x? —2ab?x?+ 4a’cx? = b?> M1

a(4ac — b?)x? = b?

Al
We require two stationarypointsand as abc+ 0, b# 0 andas a> 0,
4ac—b%*>0

giving
b? < 4ac

asrequired.

(Alternatively,as 2ax = —by, (—=by)? + 2b(—by)y + 4acy? = 4a, (4ac — b?)y? = 4a for
M1A1)

E1 (4)
(i) ay® +bx?y+cx =1

Differentiating with respectto x ,

dy dy
2 2 —
3ay dx+2bxy+bx dx+c_0

M1
For stationary points, Z—z =0,s0 2bxy+c=0
Multiplying ay3+ bx?y+cx =1 by 8b3x3,
8ab3x3y® + 8b*x5y + 8b3cx* = 8h3x3
So substituting for 2bxy,
—ac3® —4b3x*c + 8b3cx* = 8b3x3
M1

which simplifies to



4b3cx*—8b3x3—ac® =0
*Al
Consider the curve,
y = 4b3cx* —8b3x3 —ac?
This has stationary points given by

d
2 16b3cx3® — 24b3x%2 =0
dx

M1

i.,e. 8b3x%(2cx—3) =0 so,thereare only two stationary points on this quartic, which are
(0,—ac?®), Alwhich is a point of inflection on the y axis, E1 and

<3 81b% 27b3 3)

— —— —ac
2¢’ 4¢3 c3

Al
which is a turning point.

So for 4b3cx* —8b3x3 — ac® = 0 to have two solutions, if ¢ > 0, the turning point needs to be a

3 3
841; - 22—: —ac® < 0Elandif c < 0, the turning point needs to

minimum below the x axis and so

81b%  27b3 .
o o ac® > 0. E1Thus, in either case

be a maximum above the x axis and so
multiplication by 4¢3 yields

81b3 — 108b% —4ac® <0
which simplifies to
4ac®+27b3 >0
as required. E1(10)

(iii) Thesearethree simultaneous equations in two unknowns sowe may solve for two of themand
substitute into the third. The first equation rules out x = 0 as the third equation would imply

y =0, given thatabc # 0 and thus ay3 + bx?y + cx # 1 asrequired.

If we consider 2bxy + ¢ = 0 and 3ay?+ bx? = 0, thesecond if these implies thatas b > 0,
thena < 0. E1

Multiplying the second of these by 4by?, 12aby*+ 4b?x%y? = 0 and substituting from the first
of these two equations,

12aby*+c¢?2 =0
M1

Thus



4| —c2
Y=* |92

Al

o cC 12ab__4 —3ac?
=t e =t |
Al

Substituting thesein ay3 + bx?y + cx = 1 , having first multiplied itby v ,

and so

thatis ay* + bx?y?+cxy =y
gives

—c? 2

CZ 4 _C2
126 1 25 | 12ap

which simplifies to

M1
Raising this to the power four,
8 —c?
81b*  12ab
and thus
4ac®+27b% =0
asrequired. *A1(6)

(Alternative: The first two equations were combined to give 4b3cx* —8b3x3 — ac® = 0 in part (ii).
M1

The second and third can be combined to give 4b3x* +3ac? =0 M1

So, 8b3x3 +4ac3=0

Thus x = —53\/E Al
b2

andy=3\/L4_aA1

So, to have a solution we require



which simplifies to the required result. M1A1)



4. (i) Suppose

x x x X _
2k coshzcoshzm coshﬁsmhz—k = sinhx

for some integer k. E1

Then
cosh 2’i€7 sinhz,f?

X X
2"“coshzcoshz-ucoshzk+1 sinhzk+1 = 2sinhx —
smhz—k

(which is legitimate because x # 0 and hence sinh% +0)

. 2 sinhzk% cosh 2’57 . sinhik .
= sinhx — = sinhx — = sinhx
smhz—k smhz—k
which is the desiredresult for k + 1. M1
x X
2 cosh ESinhE = sinhx
Bl
so, the resultis truefor n =1.
Hence by the principle of mathematicalinduction,
inhx = 2" cosh= cosh -+ cosh — sinh —
sinhx = 2™ cos 2cos 2 cos 2nsm o
for all positive integern .
Thus
X
sinhx n on hx hx hx _hxxl 1 hx hx
= 2™ cosh =cosh —--- cosh—sinh— — — ——— = cosh —cosh—
x sinhzx—n 2 4 2n 2n x 2n sinhzx—n 2 4

as required. This working is permissibleas x # 0 ,and so sinhik #+ 0.E1(4)
2

(ii)

y _ y _ 1 -1
sinhy y+3§_?+L!5+,,. 1+33’)_!2+3;_T+...
asy—0.El
As, from (i),
sinh x % _ hx hx hx
" Sinhzx_n—cos 5 cosh - cosh o

letting n - oo,

X
~-~cosh2—n



and using the result shown from the use of the Maclaurinseries that

X
an 51
sinhz—n
we have
sinh x X X X
=cosh§coshz--~cosh2—n-~-
asrequired. E1(2)
1 EY W=
: _ . _23_3 Z_‘/EJ'\/E_i x _ Wz _ V2+1
(iii) Lettingx =1n2, sinhx = . —4,cosh2— . _zﬁ'COSh4 = =i
M1
etc.
Thus
3
) 3 WV2+1 JWV2+1
— X X
In2 2.2 /
W, [
M1A1l
and
1 4 VZ2+1 JV2+1 4 1+v2 1+V4V2
[ x x ces — X X
NACIE N MR N NN N
Al
The denominator of the first fractionis
1 1 11
2X22Z x2% x-- =22t =02 =4
E1
So
1 14+v2 1+V2
m2- 2 X2z X7
asrequired.
(iv) Substituting x =%T in M1
sinh x hx hx b X
= cos 2cos 4---cos o
and using sinhix = isinx, coshix = cosx, M1
. U
sinh—- hiT[ hin " in I T W T
i = Cos ZCOS g---cos 2n+1—E—coszcosa--cosznﬂ---

2 2



M1A1A1

<'

2
142
cosE=—2, cosZ=2cos2Z—1 andthus cos= = = 22
4 2 4 8 8 2 2
V2+VZ \/—
1= ,/2+ 2+V2
and similarly, cosln—6= 22 = . etc. M1A1M1
So
2 2 V2442 2+2+42
—_=— X X
T 2 2 2
as required. *A1(9)

(Alternatively, by induction

) on X X x X
sinx = 2™ cos =cos—:+- cos —sin—
! 2%, 2n > om
M1 A1 E1(as for (i)
As ,y -1lasy—-0,
siny
sinx X X b
T= COSECOSZ"'COS§-"

M1A1

and then, substituting x = g M1 result follows as before AIM1A1.)



5. (i)

a

[ e
1+exx

—-a

Alternative 1.

Lomm =%

a1+e*

ai+eX

Alternative 2.

Substitute u = e*

[ =, 2

aj+e*

2a—1lne%®=aqa
*A1(3)

Alternative 3.

Substitute u = 1+ e*

aj+e

2a—1lne%=aqa
*A1(3)

Alternative 4.

a

[
1+e"x

—-a

a

_f L
) 14ex X
0

(ii)

a 1 1+e% 1
f— dx = f1+e‘a ;

a
f 1 d_f 1 1 =
+0 1+e~x x_o 1+e"+1+e‘x =

a

—f C  dr=[-In(e~ 4 Dl% = (L) = Inea =
= | sy dx=[-Ine fa=In{——Z—7)=he*=a

—-a

M1 Al *A1(3)

dx =[x —In(1+)]%, =2a—1In (e +1)=2a—lne‘1=a

1+e" 41

M1 Al *A1(3)

11 B 11 L _ e*+1 _
1+u u f “u du = lInu—In(1+ u)]e_a =2a—In (e—a+1) -
M1 Al
l _ ea l__ _ e — ea—+1 —
u du = fe‘“u 1+u du =[Inu —In(1+ u)] -« =2a=In (e—a+1) -
M1 Al
a 0 a 0
_f 1 d f 1 d —f ! d f ! d
T Tre T T3 T ) Trer P Trex ™
0 -a 0 a

a

1+e™+1+e™™ p
o 1+e*)(1+e™) X

M1

dx=1[x]$ =a

f“2+e‘x+e"‘
Jp 2+er+e™

Al *A1(3)



Suppose
fg(x) dx =G(x)+ ¢

Then if

a
fg(x) dx=0 Va=0
0

G(a)— G(0)=0 Va

so G(a) = constant VYa and hence 2_? = g(x) =0 Vx =0 asrequired.

Alternatively, by the FTC, g(a) =0 Va =0 El
a 0 a
J‘ 1 d J' 1 d +f 1
=q ©
1+fo) ¢ T+ ™ S 1+7G0
-a -a
M1
0 a
ey e by o
ST T T T
a
M1A1l
a
f ! + ! 1d 0
& — =
JT+f 14/ @
M1A1l
so, by statedresult at start of part,
! + 1 1 0V
o -1 =
T+ "1+f( g
E1E1

S 1+f+1+f(—) —(1+f(=0)1+fx)) =0
e flo)f(-x) =1

*B1 (9)
(i)
h(x) h(x) e h(—2)
,[1+f(x) dx = ,[1+f(x) dx+,[1+f(x) dx=f1+f(—x)'_dx+ f

—-a —-a 0 a

M1

dx =a

0

F )

1+ f(x) dx



F h h(x) a
- !1+f(—x> * i = | s

by the result of (ii). M1 *A1(3)
(iv)
Vs T T
2 2 2
e ™™ cosx p e * cosx J coS X J
coshx T ) exe X=2 Trexx
m A ‘n
2 2 2
M1A1

cos x satisfies the conditions for h(x) in part (i) and e2* satisfies the conditions for f(x) in part
(ii). E1

Therefore,

B

e ™ cosx T
f—dx=2 cos x dx =2 [sinx]? =2
cosh x 0

oy

2
M1 A1(5)



6. (i)
o2
cos(@ + a) — cos® = cosOcosa —sin@sina — cosf ~ cos O <1—7> —sinf a —cos 6

2
= —asinf — a? cos 6 asrequired. M1 *A1l

If sing #0
a’ a .

sin(@ + a) —sin 6 a cosf —731n9 cosf -5 sin @
lir% G+ 6’=lin(1J > = 1i1'% o = —cotf
a- — a- a- ;

cos @) cos —asiné —% cos 6 —sing — 7 cosd

M1A1 Al
sin(@+a)-sinf __ .. cos(6+a)

(Alternative by I’'Hopital, lim = (lxir% —cot(6+ a) = —cot

=0 cos(B+a)—cos O  a—0—sin(@+a)

M1 A1 Al)
If sind =0
sin(@ + a) — sin@ cos @ -2
lim = lim———= lim—
a-0cos(@ +a) — cos@  a-0 ~% cos 6 a-0
M1
- —00as a— +0 and > as a—-> -0 Al(7)

(i) (a) If Qg is theinitial point of contactof C;and C,,andif X is the point on C, which was
initially at Q, , thenif Q0OQ, =0, arcQQ, on Cyis of length (n— 1)ab E1 and this will equal the
arclength QX on C, .So if Tisthe centreof C,, QTX = (n—1)6,and TP makes an

angled + (n —1)0 = nf with the x axis. E1

Thus the x-coordinate of Pis x(8) = nacos8 + acos(nf) = a(ncos @ + cosnh) asrequired.
Similarly, y(8) = a(n sin@ + sinnf). M1 *A1(4)

(b) OP = (n—1)a ifand only if (ncos® + cosnB)? + (nsinf +sinnf)? = (n —1)?

Thatis if n? + 2ncos(n—1)80+ 1=n?—-2n+1 whichis cos(n —1)8 = —1

M1
so, when (n— 1)@ isan odd multiple of M1
Therefore 8 = % m for r=20,1,- A1(3)
(Alternatively, OP = (n—1)a only if ncos@ +cosnf = (n—1)cos 8 i.e. cosnd = —cos 0 ,
and nsinf +sinnd = (n— 1)sin8 i.e. sinnf = —sin8 M1

Thus cos(n —1)0 = —cos 0 cos @ + —sinf sinf = —1 so (n — 1)0 is an odd multiple of 7M1

Result as before A1)

(c)



y y(0y + a) — y(6,) e a(nsin(8, + a) + sinn(6, + a)) — a(nsind, + sinnd,)
Pt x(8y +a) — x(6,) PAl a(ncos(6, +a) + cosn(f, + a)) — a(ncos 6, + cosnb,)

M1
2 2,2
n (a cosf, — % sin 00) + (na cosnf, — % sinn90>
= lin}) 2 202
a—
n(—a sinf, — % cos 90> + (—na sinnf, — n za cos n90>
M1 A1
cos By + cosnb, — % (sin 6y + nsinnb,)
= lim
@>0 _(sin#, + sinnf,) — %(cos 6, + ncos nb,)
sin 8, + nsinnf,
" cos By +ncosnb,
as cos 6, + cosnf, = 2 cos(n + 1)92—0 cos(n— 1)92—0 and (n— 1)92—0 =§ so cos(n — 1)92—0 =0

and similarly, sin 8, + sinnf, = 2 sin(n + 1) 92—0 cos(n—1) 92—0 =0

Further,
sinf, + nsinnd, = sin6, + n(sin((n — 1) + 1) 6,)
= sin 6, + n(sin(n — 1) 6, cos @, + cos(n — 1), sin6,)

= (1—n)sinf,

and

cos B, +n cosnb, = cos 6, + n(cos(n — 1), cos 6, — sin(n — 1) 6, sinb,)

= (1—n) cos 6,

So

. y(6y+a) —y(6,) (1-n)sinb,
lim

a-0x(6y +a) —x(6,) - (1—n)cosé, = tanfy
M1 Al

The LHS is the gradient of the tangent to the curve at P and the RHS is the gradient of OP , as
required. E1(6)



7. (i)
a x bz —cy
f(r)=n xr:(b) x(y): (cx—az)
c z ay — bx

a bz —cy
The x-component of f(f(r)) is the x-component of <b) X (cx — az)
c ay —bx

whichis b(ay — bx) — c(cx — az) = —x(b? + ¢?) + aby + acz asrequired. M1 *A1

—x(b? +c?)+ aby+ acz = —x(a? + b? + c?) + a?x + aby+ acz = —x + a(ax + by + cz)

as n is a unit vector. E1
Similarly, the y and z -components of f(f(r)) —y + b(ax+ by + cz) and —z + c(ax + by + cz)

respectively and thus fO‘(r)) =—-r+nr)n M1*Al

$(s()

(!3-‘;)'53 i
ph
G1G1G1(8)

(ii)
gm) =n+sing f(n)+ (1—cos 6) f(f(n))
=n+sind n xn+ (1 —cos 9)((n.n)n — n)
=n
M1A1
g(@) =7 +sin6 f(r)+ (1 —cosd) f(f(1))
=r+sinf n xr+ (1 —cos 9)((n.r)n— r)
=rcosf +sinf n Xr
Al

If  is perpendicularto n, thenr,n,andn X r form a mutually perpendicular vector triad.



gmapsr torcos 8 +sinf@ n X r which represents ananticlockwise rotationby 6 about an axis
in the direction n as B1 both vectors are of equal magnitude E1 and are atangleof 6 to each other
E1 and are both perpendicularto n. E1(7)

iii
. h(s)=—s—2f(s)=—s—Z((n.s)n—s)=s—2(n.s)n
So, h represents a reflection M1 in the plane through the origin perpendicular ton Al
Justification. If r is asin (ii).
h(n)=n—-2(nn)n=-n
h(r)=r -2nr)n=r
hnxr)=n xr—-2(nn Xxryn=n xr
B1

So any vector in the plane through the origin perpendicular to n is invariant under h, E1 and any
vector in the direction of n is reversed. E1 (5)



8. (i)
By de Moivre,
cos(k@) +i sin(k6) = (cosO + i sinH)*
= [cosk 6 — (IZC) cos¥=26 sin?6 + (Z) cosk=*6 sin*g — - ]
+i [(llc) cos®* 16 sing — (g) cos®73 0 sin36 + (15() cos®™> 6 sin@ — --- ]
M1A1A1
Equating imaginary parts,

sin(k8) = (Ilc) cosk= 16 sin@ — (g) cosk=3 6 sin®0 + (15() cosk=5 6 sin°0 — -

=sinf cosk 10 (k— (Ié)tanze + (I;)tan‘lg — )

M1

=sin@ cosk¥ 14 (k— (g) (sec?6—1)+ (ISC) (sec?26 —1)% — )

asrequired. *Al

Similarly, equating real parts,

cos(kB) = cos* 6 — (I;) cos¥=2 6 sin?0 + (Z) cosk¥* @ sin*g — -

= cosk @ (1 - (IZC) (sec?6 — 1)+ (Z) (sec?8—1)%— )
B1(6)
(ii)
sin(kf) =0 = sinf cosk~ 160 (k - (g) (sec?8—-1) + (ISC) (sec?0 —1)%?— ) =0

Thus, if k were odd,

k-1

sing — (k—(k)(a2—1)+(Ig)(az—1)2—---+(—1)%(a2—1)_>=0

M1
and we aregiven thatsin8 # 0

As a isodd, (a® — 1) iseven. Thus

(k - (Igc) (@®-1) + (ISC) (@2 —1)% — -+ (—1)%(& 3 1)ﬂ>

is the sum of one odd number (the first) and the remainder even, and hence is odd. Al



1
=

We are given that sinf # 0and becausea is odd # 0, and the bracketed expressionis odd

and thus not zero. Hence, we have a contradiction and thus k cannot be odd, and must therefore
be even, as required. E1

. . . . k6 Kk k..
If sin(k@) =0, and k is even, assin(k8) = 2 sin=- cos =~ where 5 isaninteger, we know

sinkz—g # 0 soit would have to be that coskz—‘9 =0. *B1 (4)
let X =n.
2

By the secondresult of (i), cos(n8) = cos™0 (1 — (Z) (sec?6—1) + (Z) (sec?0 —1)% — )

(- - D ()i )
M1

As before, the bracketed expressionis odd, being the sum of one odd number (the first which is 1)
and the remainder even, and thus not zero, so cos(nf8) # 0 which is a contradiction. A1

Thus, thereis no least integer k for which sin(k6) = 0, dM1and hence that k6 = 180p, i.e. that

__180p

0 . Hence @ isirrational. E1 (4)

(iii) Suppose thereis a positive odd integer k such that sin(k@) = 0 and sin(mg¢) # 0 for all
integersm with 0 <m < k.

Then sin(k¢) = sing cos* 1 ¢ (k - (g) tan?¢ + (15() tan* ¢ — )

=sing cosk 1g (k - (I?f) b2 +(]5‘) b4 — )
M1
As before in (ii), the bracketed expression is odd and thus not zero, sing # 0 and as
cot =% # 0, cos @ # 0. Hencea contradiction. E1
So, it would be necessarytohave k even.

. . . .k k k..
If sin(ke) =0, and k is even, assin(kg) = 2 smT(p cosT(p where 5 isaninteger, we know

sin%(p # 0 soit would have to be that cos%p =0. ElLet % =n.

cos(ng) = cos™ ¢ (1 - (’21) b2 + (Z) b4 — )

Once again, the bracketed expressionis odd and thus not zeroand cos ¢ # 0 sowe havea
contradiction. El

Once again, thereis novalue k for which sin(kg) = 0,M1li.e, that ¢ = % sog isirrational. E1

(6)



9.
Conservation of linear momentum for the collision between A and B gives

mv, + kmv, = mu

M1
i.e.
vit+kvy,=u D
Newton’s experimental law of impact gives
Vy,— V= eu (2)
M1
(1) — k(2) gives v1(1+ k) = u(1 — ke) and hence v, = ug;:)e) as required. *A1
(1) + (2) gives v,(k+ 1) =u(1 +e) and hence v, = % asrequired. *A1(4)
1
Time for B to reachwall is ;—u and the time to then return to point %D from wall is :ﬂ—u
ip
Time for A to reach point %D from wall is ;
Thus
1 1
20 _D 3P

which simplifies to

1 1 1 1
57*@7(”2—)
Hence
e
@ _ﬁ(1+26)
Al
Thus

(1—ke) = (1+e)(1+26)

e )_1+2e—e—e2

ke:l_(1+e)(1+2e =T 1+2e

M1

andso



_1+e—e2
e(1+2e)

asrequired. *A1(5)
(ii) The first collision (betweenA and B)is as in part (i).

The second collision (between B and C) is as in part (i) as the ratio of masses is thesame but u is
replaced by fu .

Thus, after two collisions, A has speed au, B has speed afu ,and Chasspeed f2u. M1A1

The condition that B and C collide half the distance from the wallisasin (i) (D = 3d)

So
_1+e—e2
e(1+2e)
E1

Equating the times of A and B toreach the point of simultaneous collision, we have

Ed d éd

2¢_4d 2¢

au fu afu
M1A1l

Therefore

5_2+3

a B ap

56 =2a+3
Al

So, substituting for a and £,

5(1+e) 2(1-ke)
(1+k)  (@(Q+k)

Thus,
5+5e=2—-2ke+3+3k
5e = k(3 —2e)
andso
b Se
3—2e



Equating these two expressions for k

1+e—e2_ Se
e(1+2e)  3-2e

M1
(3—=2e)(1+e—e?)=5e%(1+2e)
2e3—5e?+e +3= 10e3+ 5e?
8e3+10e?—e—-3=0
Al
Factorising we have,
(2e—1)(4e?+7e+3)=0
further
(2e—1)(e+1)(4e+3) =0

M1

e>0soe =% asrequired. *A1(11)



10. (i)
BP = 2acos 0
Thus, the extensionof BP is 2acos8 —a = a(2cos§ — 1)

M1

a(2 cos 6-1)

and the tensionin BP is s; W =s;W(2cosf—1)

Resolving in the direction BP , W sinf =s,W(2cos6 — 1)
M1 A1

(Alternative

Resolving vertically Tzp sin@ + Tgp cos@ = W

Resolving horizontally Tgp cos8 = Tgp sinf

Solving simultaneously Tgp = W sin8

So Wsinf =s;W(2cos6 —1)

M1Al1 )
and hence
sin 0
S 1=~
17 (2cos 6 —-1)
asrequired. *Al
By symmetry,

B cos 6
52 = (2sin —1)

B1 (5)
[Both divisions are valid as both extensions are positive and so cos8 > % and sin@ > %] @
(ii)
The GPE of the particleis =W X BP sinf = —2Wasin# cos 8
M1A1

The EPE of BP is
S1 W(a(Z cosf — 1))2
2a
M1

and the EPE of CP is



S, W(a(Z sin@ — 1))2
2a

Thus, the total potential energy of the systemiis

—Wa
— (4sinfcos @ —s;(2cos  —1)? —5,(2sinf — 1)?

Al
—Wa sin @ cos 0
__" . v Y2 Y 0 1)2
> <4sm9c050 (2cos€—1)(zcose 1) (251n9—1)(25m9 1))
—Wa
== (sin® + cos0)

So

1
p= E(sin@ + cos )
A1(5)

(sin@ + cos 8) = /2 cos(6 — 45°)
M1 A1

As cosf >§ and sin@ >%,300<9 < 60°

The expressionis a maximum when 8 = 45° when %(sin 6+cosf)= g *B1 which is attainable

and a minimum when 6 = 30° or 60° (from @) M1 E1when %(sin@ + cosf) = i(l ++/3) M1
*A1(7) which cannot be attained.

(Alternative 1. (sinf + cos@ ) = /2 sin(8 + 45°) which, similarly, is anattainable maximum
when 0 = 459 and an unattainable minimum when 8 = 30°or 60°

Alternative 2. Instead of using harmonic form

Z—Z = %(cos 0 —sin0 ) = 0 for stationaryvalue M1 A1, giving tand = 0, 8 = 45° and when

%(sin@ +cosf) = \/75 *B1 which is attainable and a minimum)

So 722p>i(1+\/§)

We require to show that 0.75 > p > 0.65.

4 3 2 43 1
64<75 =< =>§<T=>0.65<Z(1+\/?_>)

M1



9 1.2 _ . 3_\2
16- 212 20173
M1

Thus, 0.75 > \/75 =p> i(l + \/§) > 0.65 which shows that p = 0.7 correct to one significant

figure. *A1(3)



11. (i) (@) As the coinis fair, the distribution is binomial and symmetric,
so PX=r)=PX=N-r)=PX=2n-r7)

Therefore,

P(X <n— 1)_21»()( l)-ZP(X—Zn l)—ZP(X—l)—P(X>n+1)

i=n+1

El

1=PX<n—-1)+PX=n)+PX=2n+1)=2PX<n—-1)+P(X =n)

Hence,
P(XSn—l)z% (1-rP(X=n)
E1(2)
(b)
u=Np = 2nx% =n (or by symmetry) B1

6= E(X—ul) = Z(n D)D)+ Z(r w3

. r=n+1
Z(n r) 271() —Zn-l-l(r n) Zn r()
a0 La-o @)@
M1

—ZZ(n r) Zn ( ) nz:(n T) 2n 22"‘

asrequired. *A1(4)

(c)
) . (Zn) _ (2n!) 2n X (2n—1)! — 5 (Zn _ 1)

r T (2n—r)!=(r—l)!((Zn—l)—(r—l))!_ "\ro1
M1 *A1(2)
n—-1 n— n—1 1
2n 2n
8= Z(n r) 22n_ Z n 22n_ r )22n_1
r=0 r=0



But

Thus

asrequired.

(Alternative

n n
6= Z(n —7) (2:1) 22111—1 = nz (Zrn) 2231—1 - ZnZ (Zrn_—ll)zzi_l
r=0 = =

0 r=1
1 1 o) N, (2n—1y 1
22n-1 (nz (22n (n))_r=1 Zn (T—l )22n—1)
M1 M1
n 1 n-2
= (22n—1 E(2:) _9 2, (an— 1))

“nn—-1! Znnl(n—-1)! 2nlnl 2

(Zn_ 1) (2n-1)! 2n(n-1! 1(2n)! _1(2n)

n n
M1
o= g ()= ()
*A1(7)

r=0 r=1
M1A1
n 1 n—1 1
_ an (zrn)27 _ an (Zn— 1)2271_1
r=0 s=0
M1

=2nP(X<n)—-2nP(Y<n-1)



(where Y is a binomial variable (Zn — 1,%) ) M1
1 oy 1
=n(1 +P(X—n))—2nx§—n(n)27
M1 M1  *Al )

2n+1

(i) p=Np= (2n+1) x+=

& 2n+1 1
_ o _sn 2n+1 (_)
§=E(X —ub = Z_O |r 2 |( r ) 2

n
=5 (T ) (2 Y

(or by symmetry)

2n+1

r=0
M1 A1l
n
_ 2n+ 1\ 2n+1 2n+1
~2m| 3 r(
r= =0
n
1 [zn+1 o + 1
~ 2 Z (
1 [2n+1
—_ 2n __
| X2 Z(zn + 1)( 1)]
using the first result of (i) c) M1
1 [2n+1 N
n 2n
_ = 2n _
= 5| X 2 (2n+1)Z,(T)]
r=

_@n+1) (22 22" — (Znn)

22n 2 2

M1

_ (2n+ 1) (zn)

22n+1 n
A1(5)

which can alternatively be written as

_ 2n+ 1) (2n)! 3 2n+ 1)! 3 Cn+1D!'(n+1) B (n+1) (2n+1)

220+l pinl — 22n+ipinl T 22n+l(p4 1)Inl 220+l n

(Alternative



n
2n+1 2n+1 1
5=) (F5) " Ve

r=0
M1A1
n n
=Cna 02 " gz an e 02 (2 )
r=0 r=1
M1

-1
= (2n+ 1)%—(2n+1)z (25")%
s=0

= 0= -5 )

22n
M1

_ (2n+ 1) n

T 22n+1 (n)

Al )



12. (i)

If AOB = 6, then the probability distribution function for 8 f(6) = zl_n on [0,27]

0
AB = 2asin§

M1 A1

21

01
E(AB) :J- 2asin- — d@
0 2 2m

M1A1
__Za[ 9]2”
—COS > .

_4a
T

A1(5)
(Alternatives replace 8 with 2¢ , (@) =i on [0,m] ,

or minor segment AOB = 2¢ , f(¢) = % on [O,E] )
(ii)

2 2

X X
P(R < x) = —_— = )
ma a
M1
Therefore
2x
fR (x) = ﬁ
for0<x<a Al1(2)

If the ends of the chord are X and Y , then OXY is anisosceles triangle so
XY = 2+/a? — RZ%sin?t

M1A1(2)
a 2x
L(t) =f 2¢a? —x%sin?t — dx
0 a
M1A1l

4 (a2 5 . Zt)%]a
=|-55-=7 (@ —x°sin
3a?sin?t 0

4
= ~3gzeinzg (@ cos’t—a’)



4a(1—cos3t)

3sin?t
as required. dM1*A1 (4)
(1—cos3t) (1—cos3®t) 1+ cost+cos?t 1 +cost(1+cos t)
sin2t (1 —cos?t) 1+ cost " 14cost 1+ cost
M1
1 1 t
= + cost = cost += sec?=
2 cos? 5 2 2
M1 *A1(3)
(Alternative
(1 —cos3t) 1—cost+cost(1l— cos?t) 25in2§ 1 t
_ _ — 2 cpr2 o
2t = SinZt = — +cost—zsec 2+cost
sin 4sin?25cos? 5
2 2
M1 M1 *Al
giving
4a 1 t
02 e
(t) 3 cost + 5 sec’7

(i)
E(L(D) = fo243_a <cos t+% sec2%> % dt

M1A1l

_8a [ (t)]z
=35 sint + tan 21,

_ 16a
T 37

M1 A1 (4)
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