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Introductory Remarks 

This document should be read in conjunction with the corresponding mark scheme in order to gain full 
benefit from it. Since the complete solutions appear elsewhere, much of this Hints and Solutions document 
will concentrate more on the “whys and wherefores” of the solution approach to each question and less on 
the technical details. 
The solutions that follow, presented either in outline or in full, are by no means the only ones, not even 
necessarily the ‘best’ ones. They are simply intended to be the ones that, on the evidence of the marking 
process, appear to be the ones which arose most frequently from the ideas produced by the candidates and 
that worked for those who could force them through to a conclusion. If you “see” things in a different way, I 
hope you can still both follow and appreciate what is given here. 
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Question 1 

Despite the fact that this differs from the usual sort of routine A-level question of this kind – in that 
there are no “numbers” involved in the presentation of it – the underlying ideas are, essentially, unchanged. 
The opening part contains a line with a given (trigonometric) gradient, which leads to a (right-angled) triangle 
with sides of (non-numerical) lengths. The vertices and area of this triangle are thus ‘write downs’ and the 
obvious approach in part (i) of using calculus to determine the minimum value of A should be clear to all.  

(Now that there is no Formula Book available, it is important that candidates have learnt the various 
relationships – or can find them out speedily by hand if not – between the trig. functions and their derivatives, 
including the possibilities for deploying various trig. identities along the way, when necessary, in order to tidy 
any answers up.) 

 In Part (ii), the length of the hypotenuse, XY, of this same triangle needs to be determined in some 
form and, in principle at least, this is just a GCSE-level use of Pythagoras’ theorem. Finding the perimeter of 
the triangle and, again, using calculus to maximise it consists of a set of well-established routines; it is only the 
accompanying trig. work that requires a bit of skill, some background learning of the results, and a certain 
amount of care. 
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Question 2 

Since the first curve, C, is given in parametric form, candidates should be guided along the path of 

using the Chain rule result for parametric differentiation, 
ௗ௬

ௗ௫
ൌ

ௗ௬/ௗ௧

ௗ௫/ௗ௧
 , rather than reverting to finding its 

cartesian equation, hence avoiding issues with plus/minus signs that will clutter up the problem. 
𝐼𝑡 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑡𝑜 𝑡ℎ𝑖𝑛𝑘 𝑐𝑎𝑟𝑒𝑓𝑢𝑙𝑙𝑦 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 and 𝑝: one is a general 
descriptive parameter for the curve while the other represents a particular value of it, even though this, too, is 
non-specific. 

When finding the intersection, it is useful to simplify the expression using the difference of two cubes: 
𝑝ଷ െ 𝑞ଷ ≡ ሺ𝑝 െ 𝑞ሻሺ𝑝ଶ ൅ 𝑝𝑞 ൅ 𝑞ଶሻ. This is the very useful cousin of the difference-of-two-squares 
factorisation. (Students might also like to look up the sum-of-two-cubes, the difference-of-two-fourth-powers, 
and similar results, for use in other problems … these are additional results often not flagged up automatically 
in STEPs but occurring sufficiently frequently to warrant learning in advance.) Once the intersections are in 
the required form, the constraint that the two tangents are perpendicular can now be used. Note the usefulness 
of the result that 𝑝ଶ ൅ 𝑞ଶ ൌ ሺ𝑝 ൅ 𝑞ሻଶ െ 2𝑝𝑞 … another instance of a simple algebraic result that won’t 
necessarily be sign-posted but which candidates should have in their ‘toolkit’ if they are to work through STEP 
questions fluently, rather than having to keep stopping to do odd bits of working on one side before being able 
to continue fluently with the solution to a problem. 

There are various ways of finding the intersection of the two curves. One could turn everything into 
cartesian form, or just compare the parameterised 𝑥 and 𝑦 coordinates. It is tempting to try to use  𝑢 ൌ 𝑝 ൅ 𝑞 
again, but that adds an additional constraint which will not necessarily hold at the point of intersection. We 
should end up with a cubic (or a disguised cubic) which needs to be factorised by first “spotting” a solution 
and then using the factor theorem and polynomial division. (Don’t forget to check which of the solutions are 
valid … this is another routine STEP skill) 

It should then be seen that one of the solutions is a double root – and this says something very 
significant about the intersection point: what? This should help with the final sketch. It is important to try to 
make sure that the sketch is consistent with all the information that has been given or found – for example, 
what is known about the gradient of C close to 𝑥 ൌ 0? What about the symmetry of 𝐶 in the 𝑥 axis? 
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Question 3 

This question has a nice structure: firstly, an explicit “use this method” problem; followed by a “think 
about what’s required for yourself, but it should be a similar kind of thing to the first bit” problem; with a 
“you’re on your own now” finale.  

As with Q1, there’s a lot of different ways to go about these integrations, all governed by how readily 
one recognises what one has on the page at any stage of the process and on how easily it can be turned into 
something that can be integrated. A mixture of methods can be applied here, from direct integration, to use of 
the Chain rule in reverse (often referred to as “recognition” integration), through to the use of any one of a 
number of possible substitutions, or possibly even integration-by-parts. 

In the first case, working on the integrand in the suggested way leads from 

xsin1

1


 to 

x

x
2sin1

sin1




 = 

x

x
2cos

sin1
 = sec2x – sec x tan x 

and both of these terms in the final expression are directly integrable (being “standard” derivatives of tan x and 
sec x respectively). 

The obvious approach (using a similar idea to that used for the first integral) to the second integral is to 
multiply top and bottom by (1 – sec x), and this leads from 

xsec1

1


 to 

x

x
2sec1

sec1




 = 

x

x
2tan

sec1
 = cot2x – cosec x cot x 

and this is definitely similar to the situation that arose in the first case, but now requires the extra step of 
replacing cot2x with (cosec2x – 1) in order to get all terms in a directly integrable form. Alternatively, one 
could start the ball rolling here by turning  

xsec1

1


 into 

1cos

cos

x

x
 or even 

1cos

1
1

1cos

1cos1








xx

x

(some students favour turning all trig. functions into sine and cosine only, and this approach can work as well) 
and then multiplying top and bottom by (1 – cos x). In fact, this second approach yields working which ends up 
looking (essentially) exactly like the first case, only with the extra manipulation work having been done 
upfront. 

For the third integral, the most helpful method is not immediately obvious and one may need to be 
prepared to explore various ideas before full progress can be made. In fact, the initial idea used in this question 
would suggest that the best approach is to multiply top and bottom by (1 – sin x)2, and this turns out to be the 
right thing to do, although one must then be prepared to split the result into (possibly) several distinct parts and 
work on them separately. (As an aside, it is surprising how helpful it is to do this … almost all candidates who 
try to work on “the whole thing” in such cases end up making a mess of things, even if it is only by muddling a 
negative sign or missing a factor outside a bracket somewhere along the line.) I would direct the reader to the 
Mark Scheme, which shows how this third integral ends up being split (using the method suggested) into a 
direct integration, a substitution integration, and an integration-by-parts. 
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Question 4 

Part (i) is clearly a simple start for later reference – as it doesn’t look as if it turns up very soon from 
what can immediately be seen of part (ii) – and you are helpfully directed to consider integers from the outset. 
Since it is clearly a case of dealing with small numbers, it really should be possible to spot immediately that 

the (positive) square-root of  223   can only be  21 . If this is not immediately clear, then there is 
always the direct approach: 

expand ൫𝑚 ൅ 𝑛√2൯
ଶ
 to get  𝑚ଶ ൅ 2𝑛ଶ ൅ 2𝑚𝑛√2; then compare the two parts with the known

answer (hopefully avoiding a full algebraic method involving solving a quadratic-plus-linear 
pair of simultaneous equations, to find that 𝑚 ൌ 𝑛 ൌ 1 works.  

(But candidates are strongly advised to look out for every opportunity not to spend lots of time doing 
unnecessary algebra.) 

Part (ii) begins with a little bit of an explanation, and this sort of thing must always be addressed as 
completely as possible – very many students tend to gloss over important details when it is important to be 
fully convincing. 
 Thereafter, multiplying out ሺ𝑥ଶ ൅ 𝑠𝑥 ൅ 𝑝ሻሺ𝑥ଶ െ 𝑠𝑥 ൅ 𝑞ሻ and equating the coefficients with those of 
fሺ𝑥ሻ gives three equations for 𝑝, 𝑞 and 𝑠. These can most helpfully be written in the following forms 
(suggested by the given form of the “Show that …” equation in the question): 

ሺ𝑝 ൅ 𝑞ሻଶ ൌ ሺ𝑠ଶ െ 10ሻଶ, 

ሺ𝑝 െ 𝑞ሻଶ ൌ
144
𝑠ଶ

, 

4𝑝𝑞 ൌ െ8, 
and it is clear that p and q are to be eliminated from this “system” of equations. Noting that the two squared 
terms on the left-hand-sides have a useful difference which leads to ሺ𝑝 ൅ 𝑞ሻଶ ൌ ሺ𝑝 െ 𝑞ሻଶ ൅ 4𝑝𝑞 and 
rearranging then gives the required equation for 𝑠. 
 Substituting 𝑡 ൌ 𝑠ଶ produces a cubic equation and the factor theorem provides us with a method for 
finding the three possible values of s2 and we can soon find one solution, 𝑡 ൌ 2. Now take out the 
corresponding factor, and solve a quadratic equation for the other two possible values. 

 If 𝑠 ൌ √2 (using the question’s directing hint towards the use of the smallest value of s2) the 
usefulness of the opening result should be revealed, and we now have the simultaneous equations for p and q:  

𝑝 ൅ 𝑞 ൌ െ8, 𝑞 െ 𝑝 ൌ 6√2 … and now the two quadratic equations 𝑥ଶ ൅ 𝑠𝑥 ൅ 𝑝 ൌ 0 and 𝑥ଶ െ 𝑠𝑥 ൅ 𝑞 ൌ 0 

can be solved separately. Each of the solutions will involve a term of the form ඥ18 േ 12√2, and the fact that 

ඥ3 ൅ 2√2 ൌ 1 ൅ √2 from (i), together with a similar expression for ඥ3 െ 2√2, can be used to simplify the 
roots. 
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Question 5 

Once again, there are two opening specific questions which require little more than a knowledge of the 
properties of quadrilaterals and the meaning that accompanies the statement that two vectors are equal. As with 
Q4, this is for later reference. 

The start of part (i) can be approached in so many different ways, depending upon the depth of one’s 
knowledge of further vector methods (where the equations of planes, independence of vectors, the vector 
product, the scalar triple product, etc. could all be considered). However, for knowledge of vectors at single 
maths level only, the obvious tactic is to show that the two diagonals intersect and this can be done using the 
standard sorts of method for finding the vector equations of the lines PR and QS and showing that they do 
indeed intersect provided the given condition holds. 

Part (a) may seem unfamiliar territory, but the question gives all the necessaries, including the 

definition of the centroid of a quadrilateral. Note that an “if an only if” proof consists of two parts: the if () 

direction of the argument and the only if () part. Alternatively, in simple cases, it may be clear that any steps 

taken in the reasoning are entirely reversible () but this still needs to be stated clearly and not just left to be 
invisibly implied. 

In (b), once one has now realised that PQRS is a rhombus, one can proceed by working with the 
magnitudes of the relevant vectors (i.e. the lengths of the sides of the quadrilateral), and by using the 
immediately preceding result, in order to replace q, r and s with p. Then, to wrap things up (with the scalar 
product not now required for Paper 1) the Cosine rule can be used in triangle PQR to obtain the displayed 
result … thereafter, moving from rhombus to square by setting cosPQR = 0. At the very end, there is a simple 
bit of inequality work to demonstrate the final given answer. 
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Question 6 

From its appearance, one’s initial impression of Q6 is that there’s rather a lot to it … and, in fact, this 
does turn out to be the case. Nonetheless, the two parts of (i) are quite straightforward in terms of clearly stated 
demands and can be approached by everyone. The process of completing the square is relatively routine, even 

though one must be prepared to think of cos  as a numerical part of the coefficient of x (etc.) It is possible to 
factor out the 9 from the leading terms before commencing the process, but not really necessary, since the first 
two terms (to all intents and purposes the constant term, 4, at the end can be dealt with separately) will not 
require the use of fractions: 

9x2 – 12xcos  (3x – 2cos )2 – an adjusting constant. 

The final, overall adjusted, constant turns out to be 4 – 4cos2  and it is helpful to replace this immediately by 

4sin2 . The purpose of the completed-square form for the original expression is that the minimum value, and 
the value of x which gives it, can then be written down without further ado.  

The second of these given expressions is a quadratic in (x2) and one could complete the square 
(effectively hinted at from the first request) or – since there is now no clear direction as to which method 

should be used – find the required maximum (also 4sin2 ) using calculus. The summary result of part (i) now 
follows by separating off the two bits previously re-formatted and realising that the minimum of one side can 

only hit the maximum of the other – in this case – at the one instant, 4sin2 . 
 Setting the x’s equal and then turning the resulting equation into a quadratic in (sin x) leads to the 

single solution  sin x = 2
1 . Now, this is one of the “standard” exact trig. results which all candidates should 

recognise, though it does lead to two values of x in the given interval (right back at the very start of the 

question) of 0 < x < . It is then important both to consider the positive and negative square-roots of the values 
for x AND to remember that, having squared along the way, there are likely to be “extraneous solutions” that 
shouldn’t be there and hence need to be checked for validity at the end. 

In part (ii), it soon becomes clear that the given curve has two branches, a -shaped bit and a -

shaped bit. A standard calculus approach (helped by a consideration of what happens as x  0 and as   

x  ) shows that there is a minimum at (2 , 4 ) and a maximum at (0, 0), as required. Next, in the given 
rational expression, it can be quickly noted that the numerator is always less than or equal to 1 while the 
denominator is greater than or equal to 1, all of which gives us the desired result. Finally, re-arranging the 
second of the initial two established inequalities, and setting it alongside the next one gives 

x

x

x

x
22

222

sincos1

cossin
1

)(4 


 



and, with the same notion as appeared in part (i), the two can only be equal when top and bottom both take 
their maximum/minimum values respectively.  
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Question 7 

This is very much a “reasoning” question, where the explanations form a major part of the deal and 
there is no point skimming through these and expecting to come out with high marks. Although it is not 
essential to have some grasp of the ideas behind modular arithmetic, the notations used are immensely brief 
compared to the written word … so, for instance, the statement 

x  2 (mod 3) 
is actually saying that the number (integer) x leaves a remainder of 2 upon division by 3; as such, this is a 
statement being made about an infinite set of numbers which have such a property, without worrying about the 
actual whole number part when the division is undertaken (a bit like the Remainder theorem). It is also worth 
noting that we can switch between positive and negative “remainders” without any need for additional 

explanation; and x  2 (mod 3) is, in fact, exactly the same as saying that x  –1 (mod 3) since saying a number 
is 2 more than one multiple of 3 is equivalent to saying that it is 1 less than another (the next, in fact). 

So, with this basic notation in mind, let’s try to avoid using it as far as possible (though it appears 
within the published MS to some extent). To begin with part (i): 

Step 1. If 𝑎 is not a multiple of 3, dividing by 3 leaves a remainder of 1 or 2, so then 𝑎 ൌ 3𝑗 ൅ 1 or 
𝑎 ൌ 3𝑗 െ 1.  Squaring then gives 𝑎ଶ ൌ 9𝑘ଶ േ 6𝑘 ൅ 1 ൌ 3ሺ3𝑘ଶ േ 2𝑘ሻ ൅ 1, which is clearly shown to be 1 
more than a multiple of 3. 

Step 3.  We have ቀ
௔

௕
ቁ
ଶ
ൌ ൫√2 ൅ √3൯

ଶ
ൌ 5 ൅ 2√6, and ቀ

௔

௕
ቁ
ସ
ൌ ൫√2 ൅ √3൯

ସ
ൌ 49 ൅ 20√6.  So we

then have  ቀ
௔

௕
ቁ
ସ
ൌ 10 ቀ

௔

௕
ቁ
ଶ
െ 1, a relationship clearly suggested by the result to which we are working, and

this can then be rearranged to the desired form. 
Step 4.  Writing 𝑎 ൌ 3𝑘 and rearranging, 𝑏ସ ൌ 90𝑘ଶ𝑏ଶ െ 81𝑘ସ, which is clearly a multiple of 3.  So 𝑏 

must also be a multiple of 3. 
Step 5.  It follows that if 𝑎 is a multiple of 3 then 𝑎 and 𝑏 have 3 as a common factor, contradicting the 

assumption of step 2.  This is not yet enough to conclude that √2 ൅ √3 is irrational, since it is also necessary to 
deal with the case when 𝑎 is not a multiple of 3. If 𝑏 is a multiple of 3, then so is 𝑎, by symmetric reasoning, so 
the final case is when neither is a multiple of 3. In this case we use Step 1: 𝑎ସ, 𝑏ସ and 𝑎ଶ𝑏ଶ are all squares of 
numbers which are not multiples of 3, so each of these is 1 more than a multiple of 3. It follows that 𝑎ସ ൅ 𝑏ସ is 
2 more than a multiple of 3, but 10𝑎ଶ𝑏ଶ is 1 more than a multiple of 3, a contradiction. 

In part (ii), it should be clear that a similar type of working will be employed but there is going to be 
at least one significant difference (see the comment required at the very end) so one must be careful to notice 
things work slightly differently in this slightly new situation.  

As expected, then, this works similarly to part (i), but is more complicated.  Numbers which are not 
multiples of 5 can have the form 5𝑘 േ 1 or 5𝑘 േ 2.  Squaring each of these separately, their squares all have 
the form 5𝑚 േ 1, and the fourth powers all have the form 5𝑛 ൅ 1. 

 Expanding powers of √6 ൅ √7 and proceeding as for Step 3 of part (i) gives the relationship 
𝑎ସ ൅ 𝑏ସ ൌ 26𝑎ଶ𝑏ଶ.  If either 𝑎 or 𝑏 is a multiple of 5, a similar argument to part (i) shows that 𝑎 and 𝑏 have a 
common factor of 5, contradicting the assumption on 𝑎 and 𝑏.  If not, we can use what we know about squares 
and fourth powers to argue that the left-hand side is 2 more than a multiple of 5 but the right-hand side is either 
1 more than, or 1 less than, a multiple of 5, giving a contradiction. 

As a final thought, it is easy to demonstrate that a contradiction purely by considering multiples of 3 is 
not possible.  This is because 26 is 2 more than a multiple of 3, so if 𝑎ଶ and 𝑏ଶ are each 1 more than a multiple 
of 3, both sides of the equation will be 2 more than a multiple of 3. 
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Question 8 

This question deals with the process of substitution integration itself and how it can be used to show 
how things are related functionally. 

In order to be entirely comfortable with this, one must first realise the roles being played by the 
various letters. At this level, it should be clear that  

xx d )(f
2

1
  = yy d )(f

2

1
 = tt d )(f

2

1
  etc. 

since the letter being used within the integrand is irrelevant to whatever is going on … it is called a dummy 
variable and is only there as an indicator. (Of course, these letters may contain within them a wider, geometric 
or graphical, significance to the whole integral, such as indicating the area between the curve and the x- or y-
axes in the first two cases above; but the result itself – a number – is unchanged by the choice of letter. So, 
when one sees the given definition of f(x) in integral form, the upper limit of x is what now guarantees that the 
answer is indeed a function of x rather than of t and it has a rather different role. 

For (i), the f( 2
1 x) in the given answer gives the big hint: setting t = u2

1  in the original integral should 

(and does) do the trick … but it is still very important to show that everything works out properly, such as 
demonstrating how the limits change from those for t to those for u. 

In (ii), one can either take up where (i) finished … setting v = u – 2 (say) … or go back to the original 
integral and set v = 2t – 2, again being careful to show how everything works out. 

In part (iii), the first real challenge is presented. What must be done can be seen intuitively, but there is 
also the perfectly sensible tactic – also requiring insight – that a linear substitution must be required, but it is 
not immediately clear what it is. So, try setting u = at + b and forcing it through, then comparing the outcomes 
with what is needed. Doing this reveals that a = 3 and b = 2 do the trick admirably. 

Having decided that a linear substitution worked in (iii), the jump now for part (iv) would seem to 
require a quadratic substitution. Even something simple like  y = u2  would give  dy = 2u du  in the substitution 
working and, at first glance, though it looks as if the numerator of the final integrand is going to cause trouble, 

we can write  
 42

2

u

u
du  as    42

2

u

u
u du  and it is now seen that the integrand is now starting to look

remarkably similar to the form of (ii)’s integral, namely    4X

X
 dX , which has already been addressed. It 

is only the remaining details that must be dealt with, along with the fact that the final answer is not just a single  
f(--)  thing.  
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Question 9 

As with many mechanics questions, a sensibly large diagram is important; if not actually essential, 
then at least a considerable advantage. In this case, it is best to consider a 2-d vertical “cross-section” through 
ladder and box. There are really three bits of physical insight required when setting up this diagram. The first is 
that the reaction force between the box and the ladder acts at right angles to the ladder. The second is that, if 
the box topples, then it will rotate around the edge diagonally opposite the contact point between the ladder 
and the box. The third is that at the point of toppling the normal force from the ground on the box will act 
through this tipping point.  

Once the diagram has been set up suitably, the question boils down to choosing which points to take 
moments about or which direction(s) to resolve in.  

For part (i) we want to link the painter’s mass and the reaction force, so taking moments about the 
point of contact of the ladder and the ground seems most sensible. Note also, that there is no interest in what 
happens to the ladder … taking moments about any other point would require a consideration of what is going 
on at the foot of the ladder. 

This has not really brought in anything to do with the box toppling, so if we are looking for another 
crucial equation we should take moments about one of the base corners of the box. This is what is required in 
part (ii). The geometry of this can be quite tricky to deal with – the reaction force is not pointing in a 
convenient direction to deal with directly. However, some angle chasing will allow you to resolve it into 
vertical and horizontal components. 

The final part brings in friction, so we will make use of the fact that the box topples before it slides so 
the friction force must not have gone past its maximum possible value. This means that 𝐹 ൑ 𝜇𝑁. Resolving 
vertically and horizontally gives enough information about 𝐹 and 𝑁 to make progress with this expression, but 
then it is necessary to use some of the previous parts (as so often in STEP!) and some trigonometric identities 
to form the required expression. 
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Question 10 

Although not essential in this question, it is still a good idea to begin with a clear diagram; especially 
since there is a slight twist to the traditional set-up here as the angle given is with the vertical (not the 
horizontal), so standard results need to be modified carefully to fit.  

Given this slight variation, it is best in part (i) to derive the usual trajectory equation rather than “quote 
it”, though there is no harm in the latter approach: remember that t plays no part in this equation so we find a 
simple equation involving t, rearrange it and eliminate t in the other equations. Then, substituting in  y = h 

when  x = h tan , and making use of some trig. identities, leads to the required answer.  
In part (a), it should be clear that one can use the results for the sum of the roots of a quadratic. This 

might also suggest the idea that the product of the roots may be useful later on. We now have lots of 

information involving cots so you might think that, in order to show that 1 + 2 =  , one needs only to track 

back to  cot(1 + 2) = cot , and this indeed turns out to be the case. Although the compound angle formula 
for cot is not commonly used, it is easily derived from the compound angle formula for tan. There is one 
technical issue here, however, which is this: just because tan𝐴 ൌ tan𝐵 it does not follow that 𝐴 ൌ 𝐵. For 
example, tan 0 ൌ tan 180. You will have to come up with an argument about why we can equate the 
arguments of the cot function in this case.  

Up to this point we’ve not really made use of the fact that there are two solutions. Looking back, it is 
seen that the equation (*) is a quadratic in c so there is a common method for determining how many solutions 
it has.  

In part (ii), an expression for the greatest height is needed, but we must be careful that 𝑢 and 𝛼 are 
fixed in the question, so we are looking for the greatest height over the time of flight. This will occur when the 
vertical velocity is zero. We can then get the required inequality by comparing this value to the known 
achieved height h. 
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Question 11 

In the situation described in part (i), in each round, a decision is made if the coins are the same way up 
(with probability 𝑝ଶ ൅ 𝑞ଶ) and the process continues if they are different (with probability 𝑝𝑞 ൅ 𝑞𝑝 ൌ 2𝑝𝑞). 
So the probability that they continue ሺ𝑛 െ 1ሻ times and then make a decision on the 𝑛th round is 
ሺ2𝑝𝑞ሻ௡ିଵሺ𝑝ଶ ൅ 𝑞ଶሻ.  

The probability that they don’t make a decision on the first 𝑛 rounds is ሺ2𝑝𝑞ሻ௡, and so the probability 

they do is 1 െ ሺ2𝑝𝑞ሻ௡. Now 2𝑝𝑞 ൌ 2𝑝 െ 2𝑝ଶ, and completing the square will show that this is at least 
ଵ

ଶ
, 

giving the required bound. 
In part (ii), a decision is made in the first round if all coins are the same; i.e. with probability 𝑝ଷ ൅ 𝑞ଷ. 

In order to make a decision on the second round, there are two possibilities. One possibility is that the first 
round has two heads and a tail, the tail is turned over to become a head, and the other two coins are tossed, 
both resulting in heads. This has probability 3𝑝ସ𝑞. The other possibility is the same with heads and tails 
exchanged, so has probability 3𝑝𝑞ସ.  

So we wish to find the minimum value of 𝑝ଷ ൅ 𝑞ଷ ൅ 3𝑝ସ𝑞 ൅ 3𝑝𝑞ସ. One way to do this is to write it as 
a function of 𝑝 only, using the fact that 𝑞 ൌ 1 െ 𝑝, and to differentiate. If done correctly, this will give three 

turning points at 𝑝 ൌ 0, 𝑝 ൌ
ଵ

ଶ
 and 𝑝 ൌ 1. By considering the second derivative we find that 𝑝 ൌ 0 and 𝑝 ൌ 1 

are local maxima, but 𝑝 ൌ
ଵ

ଶ
 is a local minimum; so it follows that the minimum value for 0 ൑ 𝑝 ൑ 1 is at 

𝑝 ൌ
ଵ

ଶ
, and evaluating the function at this point gives 

଻

ଵ଺
. 
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