

BioMedical Admissions Test (BMAT)

Section 2: Chemistry Topic C5: Oxidation, Reduction and Redox

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Topic C5: Oxidation, Reduction and Redox

One definition of Redox reactions is all about the electrons.

- o In oxidation, electrons are lost
- o In reduction, electrons are gained

A helpful way to remember this is the mnemonic **OILRIG**:

Oxidation Is Loss Reduction Is Gain

In a redox reaction, both oxidation and reduction occur at the same time.

Redox can also be about oxygen molecules.

- Oxidation is the gain of oxygen.
- Reduction is the loss of oxygen.

Oxidising and Reducing Agents

- In a redox reaction, an **oxidising agent** is a species which causes another species to be oxidised.
 - o This means that it itself is reduced.
 - o For example, a metal goes from M^{2+} to M gaining two electrons.
- Conversely, a reducing agent causes another species to be reduced by being oxidised itself.
 - o For example, the metal which goes from M to M^{2+} losing two electrons.
- One example of this is displacement reactions such as between calcium and magnesium ions.

$Ca + Mg^{2*} \rightarrow Ca^{2*} + Mg$

- The calcium moves from an oxidation state of 0 to +2, and so it is oxidised.
 - o In doing so, it **provides 2 electrons** for magnesium to be reduced.
 - This means that it is the reducing agent.
- The magnesium ion gains two electrons to go from oxidation state +2 to 0.
 - This means that it itself is reduced.
 - But this enables calcium to be oxidised and so it is an oxidising agent.

▶
O
O

 Image: Comparison of the second secon

Oxidation States

There are some rules to remember when working out the **oxidation states** of atoms/molecules.

- → The oxidation state of an atom is always 0.
 - For example, Cl_2 has an oxidation state of 0.
- → An ion of one atom will have an oxidation state equal to the ionic charge.
 - For example, O^{2-} has an oxidation state of -2.
- \rightarrow The overall oxidation state for a compound is zero.
 - For example, NaCl has oxidation states which together equal zero.
- → An ion of multiple atoms will have an overall oxidation state equal to the ionic charge.
 - For example, SO_4^{2-} will have an overall oxidation state of -2.
- \rightarrow In a compound, group 1 metals always have an oxidation state of +1.
 - E.g. In NaCl, Na has an oxidation state of +1.
- \rightarrow In a compound, group 2 metals always have an oxidation state of +2.
 - E.g. In MgSO₄, Mg has an oxidation state of +2
- → Apart from with fluorine and in peroxides, oxygen in a compound has an oxidation state of -2.
 - In peroxides (H_2O_2) it has an oxidation state of -1.
 - In compounds with fluorine it has an oxidation state of +2.
- → Apart from hydrides, hydrogen always has an oxidation state of +1.
 - ◆ In Hydrides (e.g. NaH), it has an oxidation state of -1.

Atom/Molecule	Oxidation state	Exceptions
Atoms	0	
lons of one atom	Same as ionic charge	
Compounds	Overall 0	
lons of multiple atoms	Overall same as ionic	
	charge	
Group 1 metals in	+1	
compounds		
Group 2 metals in	+2	
compounds		
Oxygen in compounds	-2	Peroxides: -1
		Fluorine compounds: +2
Hydrogen	+1	Hydrides: -1

Spotting Redox Using Oxidation States

We can use known oxidation values to spot redox reactions.

For example: we can see this in the reaction of sodium and hydrochloric acid.

2Na
$$_{(s)}$$
 + 2HCl $_{(aq)}$ \rightarrow 2NaCl $_{(aq)}$ + H $_{2 (g)}$

- On the left-hand side:
 - o Sodium is an atom with an oxidation state of 0.
 - o Hydrogen has an oxidation state of 1+.
 - o Chlorine has an oxidation state 1-.
- On the right-hand side:
 - o Sodium is in a compound and so has the oxidation state of 1+
 - o Hydrogen is in a compound with oxidation state of 0.
 - o Chlorine still has an oxidation state of 1-.
- This means that the oxidation state of sodium has increased by 1.
 - o This is the loss of electrons (oxidation).
- Conversely the oxidation state of hydrogen has decreased by 1
 - o This is the gain of electrons (reduction).

Disproportionation

This is a reaction in which a **single** species of atom is **both** oxidised and reduced.

For example: this occurs when chlorine gas is reacted with a solution of cold, dilute sodium hydroxide.

CI_2 + NaOH \rightarrow NaCIO + NaCI + H₂O

- On the left-hand side:
 - o Cl_2 is a gas so has oxidation state 0.
 - o Na is a group one metal in a compound so has the state 1+.
 - o OH as a -1 ion has an overall state of 1-.
- On the right-hand side:
 - o Na has the state 1+.
 - o Oxygen in this case always has the state 2-.
 - o This means the CI in NaCIO must have the state 1+ to have an overall compound charge of zero.

o In NaCl, the Cl must have the state 1- for the same reason.

- o As a compound, H_2O will have an overall oxidation state of zero.
- This means that CI atoms have simultaneously gained one electron to form a 1- state and lost one electron to form a 1+ state.
 - This is **disproportionation** it has been oxidised and reduced at the same time.

O

▶ Image: Second Second

