

GCSE Physics B (Twenty First Century Science)

J259/01 Breadth in Physics (Foundation Tier)

Question Set 19

Hospitals store oxygen at high pressure in metal cylinders. The pictures show two cylinders, A and B. Both cylinders contain the same mass of gas and have the same temperature.

Cylinder B

Cylinder A contains oxygen at a pressure of 23000 kPa. (a)

The area of the base of cylinder **A** is 0.030 m^2 .

Calculate the force exerted by the gas on the base of cylinder A.

Use the equation: force normal to a surface = pressure × area of that surface

Force =N [3]

[2]

(b) Cylinder **B** has a larger volume than cylinder **A**.

The pressure in cylinder **B** is smaller than the pressure in cylinder **A**.

- (i) Explain, using ideas about particles, why storing the same mass of gas in a larger volume produces a smaller pressure.
- (ii) Both cylinders contain the same mass of gas and are at the same temperature.

	Pressure (kPa)	Volume (dm ³)
Cylinder A	23000	15
Cylinder B	10000	

Calculate the volume of gas in cylinder B.

Use the equation: pressure × volume = constant

Volume of gas =dm³ [2]

Total Marks for Question Set 19: 7

Resource Materials

Question Set No: 19

Equations in Physics

change in internal energy = mass × specific heat capacity × change in temperature

energy to cause a change in state = mass × specific latent heat

for gases: pressure × volume = constant (for a given mass of gas and at a constant temperature)

 $(final speed)^2 - (initial speed)^2 = 2 \times acceleration \times distance$

energy stored in a stretched spring = $\frac{1}{2} \times \text{spring constant} \times (\text{extension})^2$

potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge