

GCSE Physics A (Gateway) J249/04 Physics A P5-P8 and P9 (Higher Tier)

Question Set 5

Look at the results.

Driver	Speed (m/s)	Thinking distance (m)	Braking distance (m)
Α	8	6	6
В	16	13	24
С	32	24	96
D	16	12	24
E	8	5	6
F	32	30	120

(a) Most of the drivers tested the car on a dry day, on a level road.

Which driver tested the car on an icy road?

Drivertested the car on an icy road.

[1]

(b) Which driver has the quickest reaction time?

Driverhas the **quickest** reaction time.

 $\frac{d}{s} = t$

Calculate their reaction time.

$$\frac{5}{8} = 0.625$$

Answer = 0.625 s

(c) Give two drivers that have the same reaction time.

Explain your answer.

$$A \Rightarrow \frac{6}{8} = 0.75 \text{ seconds}$$

[2

[3]

 $C \Rightarrow \frac{24}{32} = 0.75 \text{ seconds}.$

· Same reaction time

Thinking distance = reaction time velocity or cor

- Driver C travels at 32 m/s on the road and then stops. The car has a mass of (d) 1200 kg.
 - Show that the kinetic energy stored by the car at 32 m/s is approximately 614000 J.

$$E = \frac{1}{2}mv^2$$

$$\frac{1}{2} \times 1200 \times 32^2 = 614400 \text{ T}$$

$$= 614000 \text{ T}$$

(ii) Describe what happens to the kinetic energy of the car as it brakes and stops.

Kinetic energy is transferred into thermal energy from friction [2] between the tires and road surface, and the brake pad and mechanism. This, therefore, slows down the vehicle to a stop as all kinetic energy is transferred from the system

(iii) The braking distance of the car is 96 m.

Calculate the **braking force** on the car. Give your answer to **4** significant figures.

$$W = \frac{F}{8}$$

$$MS = F$$

[3]

(e)	Driver B travels at 16 m/s on the road. The thinking distance is 13 m and the braking distance is 24 m.
	Driver B now drives the car uphill at the same speed on the same road.
	How will driving the car uphill affect thinking, braking and stopping distances?
	The reaction time will stay the same.
	Complete the sentences.
	The thinking distance will Stay the Same
	The braking distance will
	The stopping distance will

Total Marks for Question Set 5: 15

Thinking distance = Speed x time

The same the same.

[2]