

GCSE Physics A (Gateway) J249/04 Physics A P5-P8 and P9 (Higher Tier)

Question Set 19

Student A investigates how well different balls bounce.

- She drops five different balls from the same height and measures the height the ball bounce.
- · She repeats the experiment three times for each ball.

Her results are shown in Table 1.1.

Ball	Drop height (cm)	Bounce height (cm)			Mean bounce
		1st reading	2nd reading	3rd reading	height (cm)
Blue	100	61	62	60	61
Green	100	60	31	59	50
White	100	84	86	85	85
Yellow	100	26	24		26

Table 1.1

Student A forgot to record one of the bounce heights for the yellow ball in Table (a)

Suggest the value of the missing result.

$$26 = \frac{26 + 24 + 30}{3}$$

[1]

$$78 = 50 + \infty$$

$$\infty = 28$$

(b) Student **B** does an experiment with bouncing balls.

> He does his experiment with a drop height of **200 cm**. One ball bounces 100 cm.

Student **B** says that this ball is a better bouncer than any of Student As balls.

Use Table 19.1 and ideas about efficiency to explain why Student B is incorrect.

As Student B is dropping the ball [2] at double the neight. .. It bounces higher However that does not correlate with how bouncy the ball is.

$$\frac{61}{100} \times 100 = 61\%$$
 $\frac{100}{200} \times 100 = 50\%$ efficient

.. student A's balls are more bouncy as it is more efficient (61%750%) ... Student B 15 in correct

(c) Student B uses a new ball. He says this ball is an amazing bouncer.

He says if you drop it from 200 cm it will bounce to a height of 250 cm.

Explain why this is not possible.

As energy is not conserved (which it must) The energy put into a System is less than the energy after it bounces, which is not possible.

Bounce efficiency is $\frac{2SO}{200} \times 100 = 125\%$

which is not possible as it is greater than 100%.

mgn = 2 mg

out

2.5 mg

2mg < 2.5mg.

