

GCSE Physics A (Gateway) J249/03 Physics A P1-P4 and P9 (Higher Tier)

Question Set 26

Multiple Choice Questions

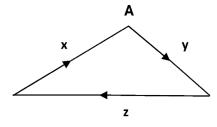
P2: Forces

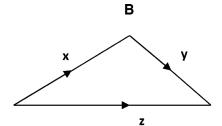
1	1	\ car	travels	200	km	in	four	houre
	·	a car	traveis	Z UU	KIII	ш	ioui	nours

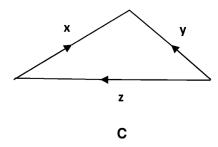
The car **doubles** its speed.

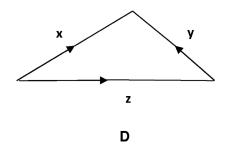
How long would it take for the car to travel 50 km?

- **A** 0.5 hours
- **B** 1.0 hours
- **C** 2.0 hours
- **D** 4.0 hours

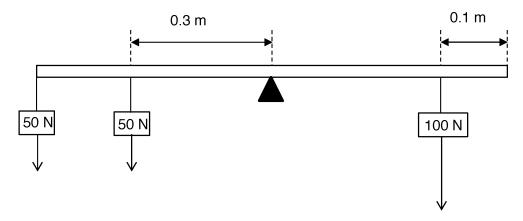

Your answer	


[1]

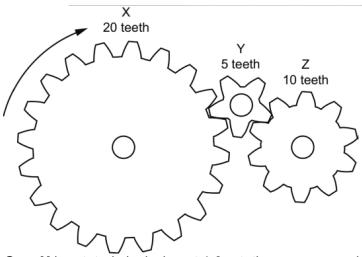

2 Three forces, **x**, **y** and **z** act on a body.


The body is in **equilibrium**.

Which vector diagram shows the body in equilibrium?



Your answer


The rod is in equilibrium.

What is the anti-clockwise moment about the pivot?

- **A** 10 N m
- **B** 15 N m
- **C** 40 N m
- **D** 100 N m

Your answer	
i oui aliswoi	

4 The diagram shows 3 gears.

Gear **X** is rotated clockwise at 1.0 rotations per second.

Which row describes the movement of gear **Z**?

	Direction of rotation	Rotations per second
Α	anticlockwise	0.5
В	anticlockwise	2.0
С	clockwise	0.5
D	clockwise	2.0

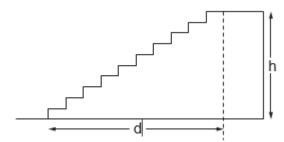
Your answer		

5 A car and driver with a total mass of 1 000 kg is travelling at 20 m/s.

The driver applies the brake and the car comes to a stop in 4 seconds.

What is the mean force on the car?

- **A** 12.5 N
- **B** 200 N
- **C** 5 000 N
- **D** 80 000 N


6	A sprir	ng, of spring constant 16 N/m, is stretched by 50 cm.
	What i	s the work done?
	A 2	2.0 J
	B 8	3.0 J
	C 1	12.5 J
	D 2	25.0 J
	Your a	nswer
7	A dive	r stands on a diving board. He weighs 400 N.
	Pivo	0.8 m
	What i	s the moment of the force provided by the diver around the pivot?
	Α	320 Nm anti-clockwise
	В	320 Nm clockwise
	С	500 Nm anti-clockwise
	D	500 Nm clockwise

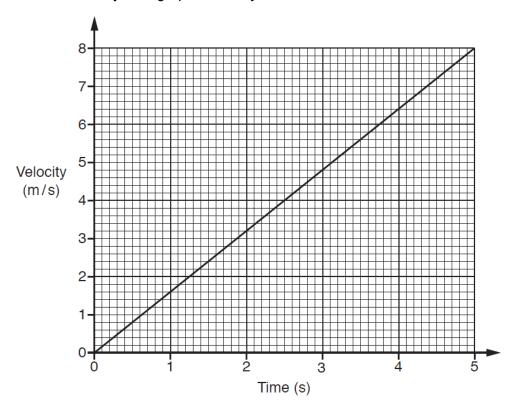
Your answer

[1]

8

A student of weight W runs up a flight of stairs..

She moves a distance d metres horizontally and h metres vertically.


What is the work done against gravity running up the stairs?

- $\textbf{A} \quad W \times d$
- $\mathbf{B} \quad \mathbf{W} \times \mathbf{h}$
- C $(W \times d) + (W \times h)$
- D $W \times \frac{h}{d}$

Your answer

9

Look at the velocity-time graph of an object.

What is the distance travelled by the object in 5s?

- **A** 0.63 m
- **B** 1.6 m
- **C** 20 m
- **D** 40 m

Your answer

[1]

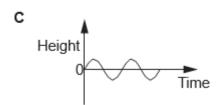
10 Which statement is equivalent to the mass of an object?

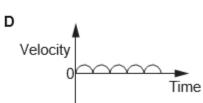
- A The ratio of acceleration over force
- **B** The ratio of force over acceleration
- **C** The ratio of velocity over acceleration
- **D** The ratio of displacement over acceleration

Your answer

What velocity does the driver of car **Q** see car **P** travelling towards him at?

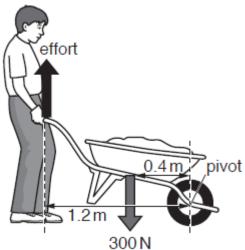
- **A** 10 m/s
- **B** 15 m/s
- **C** 25 m/s
- **D** 40 m/s


Your answer


[1]

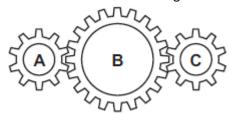
Which graph shows a bouncing ball?

Velocity 0 Time



Your answer

A man lifts a load using a wheelbarrow.

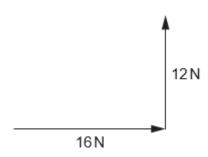

14

1.2m	
300 N	
What is the effort needed to lift the load using the wheelbarrow?	
A 100 N	
B 120 N	
C 250 N	
D 144 N	
Your answer	[1]
A 2.0 kg object moves at a velocity of 40 m / s.	
What is the momentum of the object?	
Use the equation: momentum = mass × velocity	
A 20 kg m / s	
B 38 kg m / s	
C 42 kg m / s	
D 80 kg m / s	
Your answer	[1]

15	Which one of the following uses of forces causes a rotation?	
	A Lowering a book vertically from a shelf	
	B Opening a door	
	C Lifting a book vertically onto a shelf	
	D Sitting in the centre of a see-saw	
	Your answer	[1]
16	On the Moon, a 10 kg mass has a weight of 16 N.	
	What is the gravitational field strength on the Moon?	
	A 1.6 N/kg	
	B 6.0 N/kg	
	C 26 N/kg	
	D 160 N/kg	
	Your answer	[1]
17	Which object has the most gravitational potential energy?	
	A 1 kg bag on a shelf 1 m above the ground	
	B 2 kg bag on a shelf 1 m above the ground	
	C 2 kg bag on a shelf 2 m above the ground	
	D 1 kg bag on a shelf 2 m above the ground	
	Your answer	[1]

Cogs **A** and **C** have 10 teeth. Cog **B** has 20 teeth.

Cog A is turned 5 times.

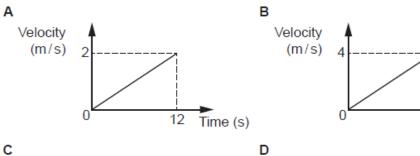

How many times does cog C turn?

- A 5 times
- **B** 10 times
- C 20 times
- **D** 50 times

Your answer

[1]

19 Two forces act at right angles to each other.


What is the magnitude of the resultant force?

- **A** 18 N
- **B** 20 N
- **C** 22 N
- **D** 24 N

Your answer

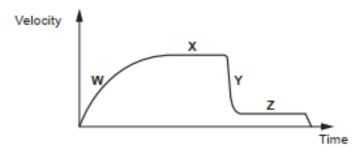
20

Look at the motion graphs.

Velocity (m/s) 24 Time (s)

Velocity (m/s) 12 24 Time (s)

Which graph shows a journey with a distance of 24 m?


Your answer

[1]

Time (s)

21 A skydiver falls from a plane. His parachute opens and he lands safely.

Look at the velocity-time graph of his journey.

Which parts of the graph show balanced forces on the skydiver?

- A X only
- B Y and Z
- C X and Z
- **D** Y only

Your answer

The	e spring constant is 60 N/m.
Са	culate the energy transferred to the spring when it is stretched.
Α	0.012 J
В	0.024 J
С	120 J
D	240 J
Yo	ur answer

[1]

A spring stretches by 2.0 cm when a force is added.

Total Marks for Question Set 26: 22

22

Equations in physics

 $(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$

change in thermal energy = mass × specific heat capacity × change in temperature

thermal energy for a change in state = mass × specific latent heat

energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$

potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil

Higher tier only -

force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge