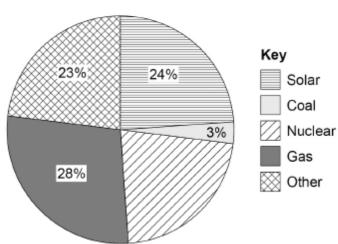


GCSE PHYSICS


Physics Test 1: Energy (Foundation)

Total number of marks: 33

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Figure 6 shows how different energy resources were used in the
 United Kingdom (UK) to generate electricity on one day in June 2018.

	0	5] [1	The UK government plans to stop using coal-fired power stations by 2025
ı		_	•		···· -·· g-· -·· - p-···

Explain **one** environmental problem caused when electricity is generated by burning coal.

[2 marks]

0 5 . 2	Give two renewable energy resources that could make up the 'Other' energy	y
	resources in Figure 6.	

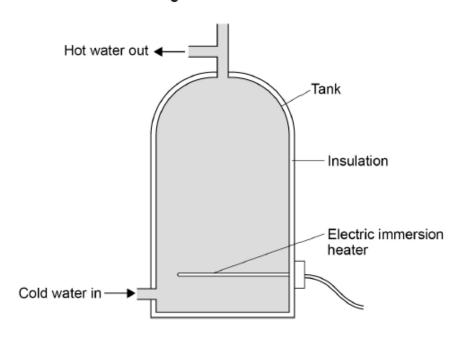
[2 marks]

1			
_			

0 5 . 3 Determine the percentage of electricity generated in nuclear power stations that day.

Use data from Figure 6.

[2 marks]


Percentage of electricity generated in nuclear power stations = ______ %

0 8

for longer.

Figure 10 shows a hot water tank made of copper.

Figure 10

0 8 . 2	The tank is insulated. When the water is not, the immersion heater switche	S Off.
	Complete the sentences.	[2 marks]
	Compared to a tank with no insulation, the rate of energy transfer from the	
	water in an insulated tank is	
	This means that the water in the insulated tank stays	

During one morning, a total of 4 070 000 J of energy is transferred from the electric 0 8 immersion heater.

4 030 000 J of energy are transferred to the water.

Calculate the proportion of the total energy transferred to the water.

[2 marks]

Proportion of total energy = _____

0 8 . 5	Write down the equation that links energy transferred, power ar	nd time. [1 mark]
0 8.6	The power output of the immersion heater is 5000 W.	
	Calculate the time taken for the immersion heater to transfer 4	070 000 J of energy.
	Give the unit.	[4 marks]
	Time =	Unit

0 6	An electric car has a motor that is powered by a battery.					
	A diesel car has	an engine that is	powered by diese	I fuel.		
0 6.1	Table 2 compare	es an electric car	and a diesel car.			
		T	able 2			_
	Power source	Maximum acceleration in m/s ²	Mass of power source in kg	Range in km	Maximum power output in kW	
	Battery	4.8	420	220	200	
	Diesel fuel	3.2	51	1120	120	
	Give two advant	tages of the diese	l car compared wi	th the electr	ic car in Table 2 . [2 ma	rks]
	2					
0 6.2		battery in the electric car is	· ·			
	Calculate the ma	ass of the battery a	as a percentage o	f the total m	nass of the electric	
		Percentage	e of total mass =			_%

0 6 . 3	Designers of electric car batteries want to increase the amount of energy th stored in a battery.	at can be
	Suggest two reasons why.	[2 marks]
	1	
	2	
	Figure 8 shows an electric car being recharged.	
	Figure 8	
0 6.4	Write down the equation which links energy transferred, power and time.	[1 mark]
0 6.5	The charger has a power output of 7000 W	
	Calculate the time taken to transfer 420 000 J of energy to the car battery.	[3 marks]
	Time =	s

1 0 Figure 19 shows a tennis ball thrown vertically into the air.

Figure 19

At position ${\bf C}$, the ball has just left the tennis player's hand at a speed of 5.0 m/s The tennis ball has a mass of 0.058 kg

1 0 . 1 Write down the equation that links kinetic energy, mass and speed.

[1 mark]

1 0 . 2	Calculate the kinetic energy of the tennis ball at position C. [2 marks]
	Kinetic energy = J
1 0.3	At position A the tennis ball is at maximum height.
	What is the gravitational potential energy of the tennis ball at position A?
	Ignore the effect of air resistance. [1 mark]
	At position B the tennis ball has 0.38 J of gravitational potential energy.
1 0 . 4	Write down the equation that links gravitational field strength, gravitational potential energy, height and mass. [1 mark]
1 0 . 5	Calculate the height of the tennis ball above the tennis player's hand when at position B .
	gravitational field strength = 9.8 N/kg [3 marks]
	Height = m