

A level Physics A H556/03 Unified physics

Question Set 14

 $^{60}_{27}\mathrm{Co}$ is produced by irradiating the stable isotope $^{59}_{27}\mathrm{Co}$ with neutrons.

Each nucleus of $^{60}_{27}$ Co then decays into a nucleus of nickel (Ni) by the emission of a low energy beta-minus particle, one other particle and two gamma photons.

(a) Complete the nuclear equations for these two processes.

$$^{59}_{27}$$
Co +n \longrightarrow $^{60}_{27}$ Co \longrightarrow Ni +e + + 2γ [3]

(b) Students want to carry out an investigation into gamma photon absorption using a source of $^{60}_{27}$ Co.

They add sheets of lead between the source $\bf S$ and a radiation detector $\bf T$, to give a total thickness d of lead. $\bf S$ and $\bf T$ remain in fixed positions, as shown in Fig. 2.1.

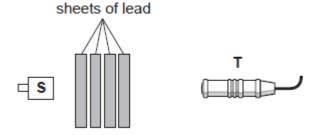


Fig. 2.1

(i) The $^{60}_{27}$ Co source emits beta radiation as well as gamma radiation.

Explain why this would not affect the experiment.

(ii) The students record the number *N* of gamma photons detected by **T** in 10 minutes for each different thickness *d* of lead. The background count is negligible.

The results are shown in a table. The table includes values of ln *N*, including the absolute uncertainties.

N	d/mm	In N
4300 ± 440	0	8.37 ± 0.10
2500 ± 250	10	7.82 ± 0.10
1400 ± 150	20	7.24 ± 0.11
800 ± 90	30	6.68 ± 0.11
500 ± 60	40	6.21 ± 0.12
300 ± 40	50	

N and d are related by the equation $N = N_0 e^{-\mu d}$ where N_0 and μ are constants.

- **1.** The students decide to plot a graph of ln *N* against *d*.
 - Show that this should give a straight line with gradient = $-\mu$ and y-intercept = $\ln N_0$.

[1]

- **2.** Complete the missing value of ln *N* in the table, including the absolute uncertainty.
 - Show your calculation of the absolute uncertainty in the space below.

[2]

3. |

3. In Fig. 2.2, five of the data points have been plotted, including error bars for ln N.

[2]

- · Plot the missing data point and error bar.
- Draw a straight line of best fit and one of worst fit.

Fig.

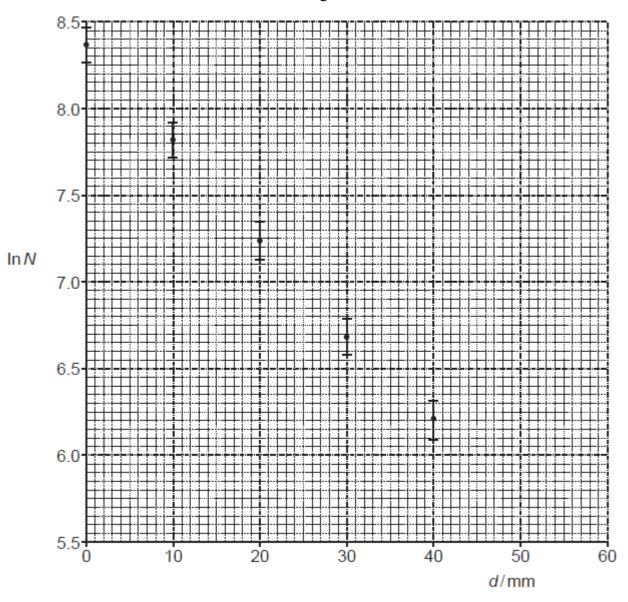


Fig. 2.2

± m ⁻¹ [4]	μ =	
the number of gamma photons	. Determine the thickness, $d_{1/2}$, of lead which reaching T .	5.
F21	d -	

4. Use Fig. 2.2 to determine the value of μ in m⁻¹, including the absolute uncertainty.

Total Marks for Question Set 14: 15

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

of the University of Cambridge