

A level Physics A H556/03 Unified physics

Question Set 8

1 The 500m tall Taipei 101 tower is shown in Fig. 2.1. The tower has a massive sphere suspended across five floors near the top of the building to dampen down movement of the tower in high winds and earthquakes. The sphere is connected to pistons (not shown) which drive oil through small holes providing damping. The vibration energy of the sphere is converted to thermal energy.

Fig. 2.1

Fig. 2.2

Fig. 2.2 models the damper system as the sphere held between two springs. The movement of the walls of the tower forces the sphere to oscillate in **simple harmonic motion**.

In the strongest wind, the natural frequency of the oscillations of the tower is 0.15 Hz and the maximum acceleration of the sphere is 0.050 m s⁻².

(a) Calculate the maximum displacement of the sphere in the strongest wind.

maximum displacement = m [3]

(b) Explain why the natural frequency of the damper system must be about 0.15 Hz.

[2]

(c) The acceleration *a* of the sphere is given by the equation

$$a = -\left(\frac{k}{m}\right)x$$

where k is the force constant of the spring combination, x is the displacement of the sphere and m is the mass of the sphere.

The mass of the sphere is 6.6×10^5 kg. The natural frequency of the oscillations of the sphere is 0.15 Hz.

(i) Show that the force constant k of the spring combination is about $6 \times 10^5 \text{ Nm}^{-1}$.

[3]

(ii) The S-wave of an earthquake causes a sudden movement of the building displacing the sphere 0.71 m from its equilibrium position relative to the building.

Use your answer in (i) to calculate the energy transferred to the springs of the damper system.

```
energy transferred = ...... J [2]
```

Total Marks for Question Set 8: 10

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge