

A Level Physics A

H556/02 Exploring physics

Question Set 28

1 (a) Fig. 21 shows stable and unstable nuclei of some light elements plotted on a grid. This grid has number of neutrons *N* on the vertical axis and number of protons *Z* on the horizontal axis.

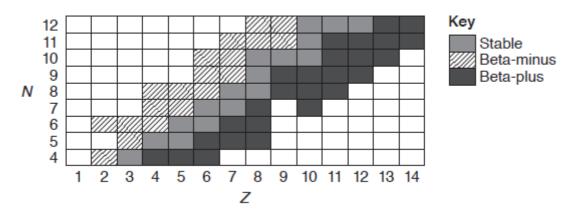


Fig. 21

The key on Fig. 21 shows whether a nucleus is stable, emits a beta-plus particle or emits a beta-minus particle to become stable.

For Z = 7, suggest in terms of N why an isotope may emit

(i)	a beta-minus particle	
		[1]
(ii)	a beta-plus particle.	
		[11

(b) Inside a nuclear reactor, fission reactions are controlled and **chain reactions** are prevented. A typical fission reaction of the uranium-235 nucleus (²³⁵₉U) is illustrated below.

$$^{1}_{0}$$
n + $^{235}_{92}$ U \rightarrow $^{141}_{55}$ Cs + $^{93}_{37}$ Rb + $^{1}_{0}$ n

The neutron triggering the fission reaction moves slowly. The neutrons produced in the fission reaction move fast.

(i) Describe what is meant by chain reaction.

()		[2]
(iii)	The energy released in each fission reaction is equivalent to a decrease in mass 0.19 u. A fuel rod in a nuclear reactor contains 3.0% of uranium-235 by mass.	of
	Estimate the total energy produced from 1.0kg of fuel rod.	
	molar mass of uranium-235 = $0.235 \text{kg}\text{mol}^{-1}$ 1 u = $1.66 \times 10^{-27} \text{kg}$	
	energy = J	[4]

(ii) Explain how chain reactions are prevented inside a nuclear reactor.

Total Marks for Question Set 28: 10

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

opportunity.

of the University of Cambridge