

A Level Physics A H556/01 Modelling physics

Question Set 2

Multiple Choice Questions

1 Four materials A, B, C and D have the same length and cross-sectional area. The force against extension graph for each material up to the breaking point is shown below.

Which material is brittle and has the greatest ultimate tensile strength?

B Your answer [1]

2 The braking distance of a car is directly proportional to its initial kinetic energy.

The braking distance of a car is 18 m when its initial speed is 10 m s⁻¹.

What is the braking distance of the car, under the same conditions, when its initial speed is 25 ms^{-1} ?

7.2m
$$d = K E_{K}$$

$$18 = K \times (Y_{1} \text{ M} \times 00)$$

$$18 = kx(71 m x 00)$$

 $18 = km \times 100$ $18 = 50 km$
 $925 = km$

$$d = k \times 1 m \times 75^{2}$$
 $d = k m \times 625$
 $d = 625 km$

$$d = \frac{625}{2} \times \frac{9}{25} = 112.5 \, \text{m} \approx 113 \, \text{m}$$

3 A ball is dropped from rest above the ground. Air resistance has negligible effect on the motion of the ball.

The speed of the ball is v after it has fallen a distance h from its point of release.

Which graph is correct for this falling ball?

GPE =
$$F_K$$

 $mgh = \frac{1}{2}mv^2$
 $h = \frac{1}{2}yv^2$
 $h = \frac{1}{2}yv^2$
Lo constant the gradient
 $y = mx + c$

Your answer

D

4 The flat end of a uniform steel cylinder of weight 7.8 N is glued to a horizontal ceiling. The cylinder hangs vertically. The breaking stress for the glue is 130 kPa.

The glue only just holds the cylinder to the ceiling.

What is the cross-sectional area of the cylinder?

A
$$6.0 \times 10^{-2} \text{m}^2$$

B
$$6.0 \times 10^{-5} \text{m}^2$$

$$130 \times 10^3 = \frac{7.8}{A}$$

C
$$1.7 \times 10^{-2} \text{ m}^2$$

$$A = \frac{7.8}{130 \times 10^3} = 6 \times 10^{-5} \text{ m}^2$$

D $1.7 \times 10^1 \text{ m}^2$

5 The diagram shows two opposite vertical forces of magnitude 1.2 N and 2.1 N acting on an object.

Which of the following statements could be correct?

- 1 The object is accelerating and moving up.
- 2 The object is decelerating and moving down.
- The magnitude of the resultant force is 0.9 N.
- Only 3 Α
- Only 1 and 3 В
- C Only 2 and 3
- D 1, 2 and 3

Your answer

6 A tensile force of 4.5 N is applied to a spring. The spring extends elastically by 3.2 cm.

What is the elastic potential energy of the spring?

$$E_p = \frac{1}{2} k_{\chi^2} = \frac{1}{2} f_{\chi}$$

$$E_p = \frac{1}{2} \times 4.5 \times 3.2 \times 10^{-2}$$

$$= 0.0727$$

Your answer

[1]

7 An object above the ground is released from rest at time t = 0.

Air resistance is negligible.

What is the distance travelled by the object between $t = 0.20 \,\mathrm{s}$ and $t = 0.30 \,\mathrm{s}$?

8 A puck of mass 0.16 kg is sliding on ice with a constant velocity of 11.0 m s⁻¹. A hockey stick exerts a force on the puck, for a short period of time, in the **opposite** direction to the velocity of the puck. The momentum of the puck changes by 2.0 kg m s⁻¹.

Ignore friction.

What is the speed of the puck when it leaves the hockey stick?

Your answer

9 The centre of a rod is fixed to a pulley. Two 50 N forces are applied to the ends of the rod as shown. The tension in the rope attached to the pulley is *T*. The system is in equilibrium.

Not to scale

What is the moment of the tension *T* about the centre of the pulley?

- **A** 10 N m
- **B** 20 N m
- **C** 30 N m
- **D** 40 N m

$$M (v = M)$$

10	One end of a spring is fixed and a force F is applied to its other end. The elastic potentia	
	energy in the extended spring is <i>E</i> . The spring obeys Hooke's law.	

What is the extension
$$x$$
 of the spring? $E = \frac{1}{2} k_{x}^{2}$

A $x = \frac{E}{F}$

B $x = \frac{F}{E}$

C $x = \frac{2E}{F}$

D $x = \frac{F}{2E}$

Your answer

 $\chi = \frac{F}{2E}$
 $\chi = \frac{F}{2E}$

11 A trolley of mass *M* is pulled along a horizontal table by a force *W* provided by a mass hanging from the end of a string as shown.

[1]

[1]

Frictional forces are negligible. The acceleration of free fall is g.

What is the correct equation for the acceleration a of the trolley?

D

A
$$a = \frac{W}{M}$$

B $a = g$

Only force moving system = W

System where as a whole, so (posider

TOTAL mass

 $M = \frac{W}{M + \frac{W}{g}}$
 $M = \frac{W}{M + \frac{W}{g}}$
 $M = \frac{W}{M + \frac{W}{g}}$

The table below shows some data on two wires **X** and **Y**.

Wire	Young modulus of material/GPa	Cross-sectional area of wire/mm²
Х	120	1.0
Υ	200	2.0

The wires X and Y have the same original length. The tension in each wire is the same. Both wires obey Hooke's law.

What is the value of the ratio $\frac{\text{extension of } X}{\text{extension of } Y}$?

 $y = \frac{\sigma}{\varepsilon} + \varepsilon = \frac{\sigma}{y}$ $e = \frac{\sigma}{Ly} = \frac{\sigma}{A}$

$$e_1 = \frac{\sigma_1}{LY_1}$$
 $e_2 = \frac{\sigma_2}{LY_2}$

$$\frac{e_{y}}{e_{y}} = \frac{\sigma_{x}}{\frac{L y_{x}}{\sqrt{g_{y}}}} = \frac{\sigma_{x}}{L y_{x}} \times \frac{L y_{y}}{\sigma_{y}} = \frac{\sigma_{x} y_{y}}{\sigma_{y} y_{x}}$$

Your answer

$$\frac{e_{x}}{e_{y}} = \frac{F_{A_{x}}Y_{y}}{F_{A_{y}}Y_{x}} = \frac{Y_{y}/A_{x}}{Y_{x}/A_{y}} = \frac{Y_{y}}{A_{x}} \times \frac{A_{y}}{Y_{x}} = \frac{Y_{y}A_{y}}{Y_{x}A_{x}} = \frac{700 \times 2}{170 \times 1} = 3.33$$

13 An object is dropped from rest at time t = 0. It falls vertically through the air The variation of the velocity *v* with time *t* is shown below.

Which statement is correct about this object?

- Α It has constant acceleration.
- В It experiences zero drag at $t = 30 \, \text{s}$.
- It has an acceleration of $9.81 \,\mathrm{m}\,\mathrm{s}^{-2}$ at $t = 0 \,\mathrm{s}$. C
- It travels the same distance in every successive 10 s.

Which statement correctly describes the **resultant** force on the falling cone before it reaches terminal velocity?

A decreasing and upwards

B decreasing and downwards

C increasing and downwards

D increasing and upwards

[1]

Your answer B

15 A car is dripping oil at a steady rate on a straight road. The road is divided into four sections **A**, **B**, **C**, and **D**.

Which section of the road shows the car travelling at a constant speed?

Your answer C [1]

16 A pendulum bob is oscillating in a vacuum.

The maximum height of the bob from the ground is 1.3 m and its minimum height is 1.1 m.

What is the maximum speed of the pendulum bob?

A
$$2.0 \,\mathrm{m}\,\mathrm{s}^{-1}$$

B
$$3.9 \,\mathrm{m}\,\mathrm{s}^{-1}$$

$$D 26 \, \text{m s}^{-1}$$

Your answer

$$mg \Delta h = \frac{1}{2} m (\Delta v)^{2}$$
 $g \Delta h = \frac{1}{2} (\Delta v)^{2}$
 $g \Delta h = \frac{1}{2} (\Delta v)^{2}$

 $P = \frac{F}{A} = \frac{kg m s^{-2}}{m^2} = kg m^{-1} s^{-2}$

17 Which of the following shows the correct base units for pressure?

$$\pmb{A} \quad kg \, m^{-2}$$

C
$$kg m^{-1} s^{-2}$$

D
$$kg m^2 s^{-3}$$

Your answer

[1]

18 A graph showing the variation of the stress σ with strain ε for a material is shown below.

What is the Young modulus of the material?

A
$$6.0 \times 10^4 \text{ Pa}$$

C
$$8.0 \times 10^{10} \, \text{Pa}$$

Your answer

$$\frac{0.1}{100} = 0.001 = \varepsilon$$

$$\frac{0.1}{100} = 0.001 = E$$

$$y = \frac{0}{E} = \frac{120 \times 10^6}{0.001} = 1.2 \times 10^{11} P_a$$

[1]

Total Marks for Question Set 2: 18

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

the University of Cambridge