

GCSE (9-1) Mathematics J560/05 Paper 5 (Higher Tier)

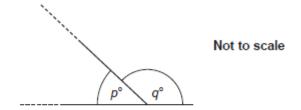
Question Set 1

1.	(a)	Simplify fully. $\frac{3a^8 \times 2a^5}{a^2}$	
	(b)	Solve. $\frac{6x-10}{5} = 1$. [3]
2.	(a)	(b) x =	. [3]
	(b)	(a) If the sunflower grows at a faster rate, how would this affect your answer to part (a)?	

- A bag contains 4 red counters and 3 blue counters only. Jack picks a counter at random and then replaces it. Jack then picks a second counter at random.
 - (a) Complete the tree diagram.

(b) Work out the probability that Jack picks two red counters.

(b)[2]


[2]

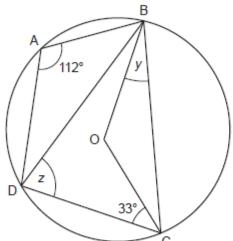
4. Mrs Mills buys 4 packs of treats for her cats, Fluff and Tigger. She gives Fluff $\frac{1}{6}$ of a pack each day.

She gives Tigger $\frac{1}{5}$ of a pack each day.

For how many complete days will the 4 packs of treats last?

_							
5.	An interior	angle of a	in isosceles	triangle is p°	and a	an exterior	angle is q°.

It is given that q = 5p.


(a) Write the ratio p:q in its simplest form.

(b) Work out the two different possible sets of angles for the isosceles triangle.

6.	(a)	Write $\frac{1}{6}$ as a recurring decimal.					
		(a)[2]					
	(b)	Elsa divides a two-digit number by another two-digit number. She gets the answer $0.1\dot{5}$.					
		She says that there is only one possible pair of numbers that will give this answer. Is she correct? Show how you decide.					
		[4]					

7. A, B, C and D are points on the circumference of a circle, centre O.

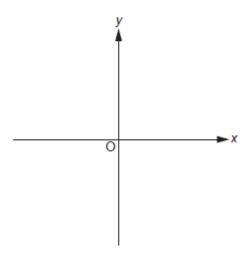
Angle BAD = 112° and angle DCO = 33°.

(a) Show that angle $y = 35^{\circ}$.

Give reasons for each stage of your working.

[4]

Not to scale


(b) Work out angle z. Give reasons for your answer.

Angle z =° because

8. (a) Write $x^2 + 8x + 3$ in the form $(x + a)^2 - b$.

(a)[3]

(b) Sketch the graph of $y = x^2 + 8x + 3$. Show clearly the coordinates of any turning points and the *y*-intercept.

[4]

	:	12 used a train. 6 used a car. 7 did not use a trai Some used a trai				
	Two pe	ople are chosen at	random from t	hose who use	d a train.	
	Find the	probability that bo	oth these peopl	e also used a	car.	
						re
					••••••	 [0]
Tot	al Ma	arks for Qu	estion Se	t 1: 51		

9. 21 people travelled to a meeting.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

opportunity.

of the University of Cambridge