

GCSE MATHEMATICS

S21-C300

Non-Calculator Assessment Resource R

Higher Tier

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

1. Work out $2\frac{3}{4} \div \frac{5}{8}$.

Give your answer as a mixed number in its simplest form.				
23 = 11 = 22				
4 4 8				
22				
<u>8</u> = 22 — > 42				
$\frac{s}{\sigma}$ S $\frac{s}{\varsigma}$				
8 _				
	••••••			

(b) The diagram shows two circles, one inside the other.

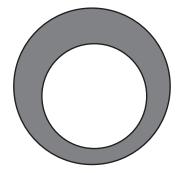


Diagram not drawn to scale

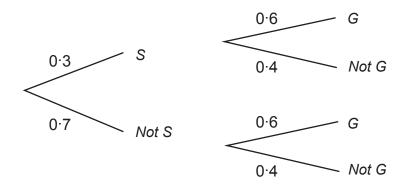
The radius of the outer circle is 6 cm. The radius of the inner circle is 5 cm.

Work out the area of the shaded region. Give your answer in terms of π .

[3]

OULLE	א ד	· r ² =	$\pi 6^2 =$	36 r	
Inner	$\rightarrow \pi$	r ² =	πς ² =	2 <i>5</i> T	
			– 2Sπ		
••••••					

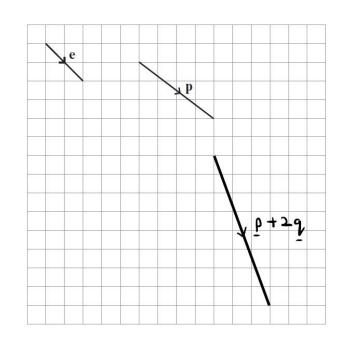
Area of shaded region =
$$\frac{1}{\pi}$$
 m cm²


3. A line *L* has equation y = 12 - 4x.

Write down the equation of a different line that is parallel to <i>L</i> .	[1]

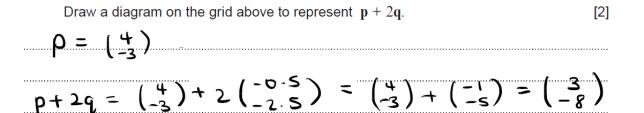
- Jan's hobbies are sewing and gardening. 4.
 - Each week the probability that she spends:
 - Monday evening sewing (S) is 0.3,
 time gardening on Friday (G) is 0.6.
 These events are independent.

The tree diagram shows this information.


Calculate the probability that, in a randomly selected week,

(a)	Jan sp	ends M	londay	/ evenii	ng sew S	ing but	does no	ot spend		rdening	। on Friday, <i>S</i> .	[2]
	Q.	3	×	0、	Ч	Ľ	0	12				
(b)	Jan do	bes not	spend	I Mond	ay eve	ning se	wing bu	t does s	spend tir	ne garo	lening on Fi	riday. [2]
(b)	Jan do		-		-	-	-		spend tir 、こそ	-	lening on Fi	
(b)	Jan do		-		-	-	-			-	lening on Fi	
(b)	Jan do		-		-	-	-			-	lening on Fi	

$\frac{3}{2}, -\frac{9}{4}, \frac{27}{8}, -\frac{81}{16}, \dots$	[2]
$\frac{81 \times 3}{16 \times 2} = \frac{243}{32}$	
16×2 32	
(b) The <i>n</i> th term of a sequence is $(2\sqrt{3})^n$. Find and simplify the 3rd term of this sequence.	[2]
(2 (3) ³	
$= 8(53)^3$	
= 8(353)	
= <u>2</u> 453	
(c) Find the <i>n</i> th term of this sequence. $1.5, 3, 5.5, 9, 13.5, \dots$ 1.5, 7.5, 3.5, 9.5, 9.5	[2]
1 1	
$= \frac{1}{2} n^{2} + 1$	


5. (a) Find the next term of this sequence.

The grid shows the vector $\mathbf{e} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ and the vector \mathbf{p} .

The vector $\mathbf{q} = \begin{pmatrix} -0.5 \\ -2.5 \end{pmatrix}$.

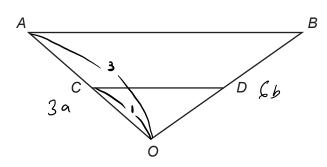


Diagram not drawn to scale

OA = 3a and **OB** = 6b. The sides of triangles *OAB* and *OCD* are in the ratio 3 : 1.

By writing **AB** and **CD** in terms of a and b, decide whether *CD* is parallel to *AB*.

				Р	arallel	V		Not	Paralle					
	Sh	ow how	/ you de	ecide.										[3]
•••••		١Ļ	the	_ 8	10e	8	ang	in ·	the	rat	٥٧	3.1		
	ОĄ	= 3	a	and	O	С	<u> </u>							
anc	A O B	- 6	— 56	ano	σ	D	=26							
	: :-	AB) =	бь	-3	9								
	SO	СС) =	2 t) — C	7								•••••
		ωı	1 ICh	ıs	a r	пи	Niple	٥F	AB	<u>ب</u>	CD	- 3	SAB	
		۶ĉ) -th	ly	ane	pa	۲r aW	2)						

(b)

7. The diagram shows a sketch of a letter L.

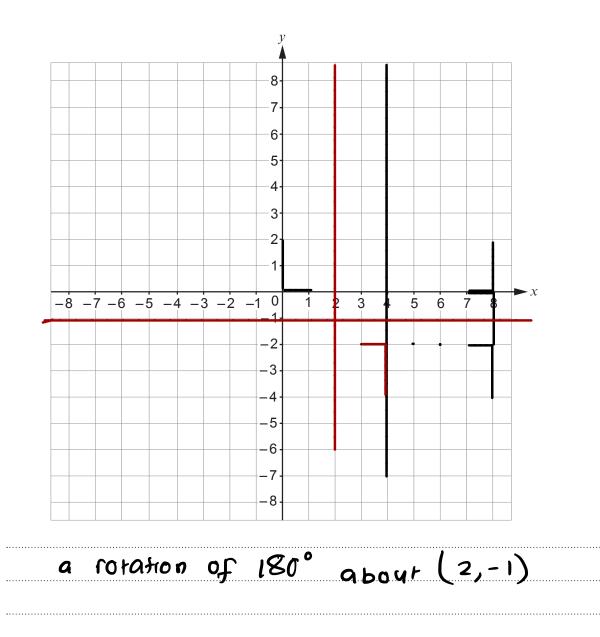


Diagram not drawn to scale

This letter is first, reflected in the line x = 4, then reflected in the *x*-axis and finally translated through $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$.

Describe the **single** transformation that is equivalent to these 3 transformations. You may use this grid to help you.

[3]

8. *(a)*

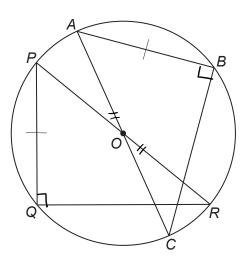
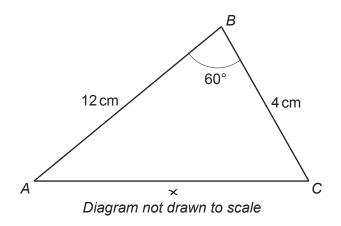


Diagram not drawn to scale

Points A, B, C, P, Q and R lie on the circumference of the circle, centre O.

Show that triangle *ABC* is congruent to triangle *PQR*. Give a reason for each step of your answer.


Triangle ABC	Triangle PQR
AC = 0A + 0C.	PR = OP + OR
= 2r = a	= 2r = 01
	/
ABC = 90°	POR = 90
PQ = BA	PQ = BA
	rhs
these triangly	25 are congruent Make a right angle, with is the dimeter, and equal Side
as they both	have a right angle,
equal hypotenuse V	and equal Side
(AC = PR)	(PQ = BA)

[3]

(b)

William says, "It is possible to draw one circle through the four vertices of any kite that has two opposite angles that are right angles."

Is William correct?	Yes	No	
Show how you decide.			[1]

Calculate the length of *AC*. Give your answer as a surd in its simplest form.

2 Cos A Zbc 9 2 Ξ \vdash Q² 122 + 42 - 2(12)(4) 005 60 a² 96 (0560 144 + 16 --2 48 а 144 + 16 2 5 96+16 9 $q^2 = 112$ りつ 7 112 а Ξ 9 Ξ 16 × 7 иJ7 Ξ α

[5]

$(x + 4)^{2} - 16 + 18^{2}$	
$(x + 4)^2 + 2$	
Q = 4	
b = 2	
(b) Write down the coordinates of the turning point of the curve $y = x^2 + 8x$.	[2]
$(x + 4)^2 - 16$	
Turning point = (-4)	

10. (a) Write the expression $x^2 + 8x + 18$ in the form $(x + a)^2 + b$, where *a* and *b* are integers. [3]