

GCSE MATHEMATICS

S21-C300

Non-Calculator Assessment Resource N

Higher Tier

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

1. In 2018, the total volume of ice in the Greenland ice sheet was 2.99×10^6 km³. The total surface area of the ice sheet was 1.799×10^{6} km².

Assuming that the depth of the ice was constant for the whole ice sheet, estimate the depth of the ice in 2018. [3]

You must state the units of your answer.

	ျပ
total voume = 2.99×106	
total surface area = 1.799×106	
alph = 2-99×16 - 1-662034464	
1-799×106 ~ 1-66 (85F)	

Depth of ice = $l \cdot 66$ Units <u>K m</u>

(a) Delyth borrows £3450 from a family member who charges her 2% per year simple interest.
She pays all the money back in one payment after 1 year 3 months.

[3]

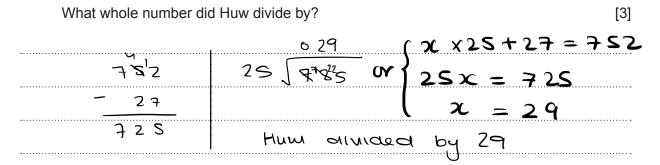
 $3 \text{ months} = \frac{3}{12} = \frac{1}{4} = 0.25$ 1+0.25 $1\cdot 25$ 3450 (1 + 0.02) $= 3536 \cdot 464556$ $\therefore 3536 \cdot 46 - 3450 = 86.46$ Interest £ 86 \cdot 46 $1 \text{ lnterest } \text{£} 86 \cdot 46$ (b) Aiden invested £65 for 5 years at a rate of r% simple interest per year. No extra money was paid in and no money was withdrawn during these 5 years. At the end of the 5 years he received £9.75 interest in total.

(b)	Aiden invested £65 for 5 years at a rate of r % simple interest per year. No extra money was paid in and no money was withdrawn during these 5 years. At the end of the 5 years he received £9.75 interest in total.	
	Find the value of <i>r</i> .	[3]
	$65 \times \frac{r}{100} \times 5 = 9.75$	
••••••	$\underline{C} = \underline{3}$	•••••
••••••	00) 001	
•••••	r=3	•••••
•••••	······	•••••
	r=3 %	

How much interest does Delyth pay?

3. Shania has two pieces of ribbon.

One piece is $5\frac{1}{4}$ metres long.


The difference between the lengths of the two pieces is $2\frac{9}{20}$ metres.

Work out the **two** possible lengths of the other piece of ribbon. Give each of your answers as a mixed number in its simplest form.

 $= S_{y} = 5.2S_{m}$ long 1 prece 2nd puece is $S + 2\frac{9}{20}$ $= \frac{21}{9} + \frac{9}{20} = \frac{105 + 9}{20}$ OR $\frac{19}{20} = \frac{108}{2}$ <u>-49 - 56 =</u> 20 ZO <u>21 - 4</u> 9 - 2 •••••• _____ Kibbon 00 + Tomor 25 m

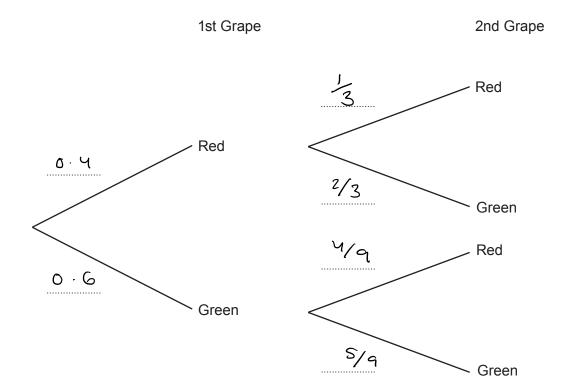
[4]

- 4. Huw has a maths test.
 - (a) For the first question, Huw divides 752 by a whole number. His answer, which is correct, is <u>25 remainder</u> 27.

(b) The second question is:

The only food provided for guests at Seaview Hotel is breakfast. The hotel has enough food to make breakfast for 20 guests for 6 days. How long would the food last 30 guests? You may assume each guest eats the same amount of food for breakfast.

Here is Huw's working.


20 guests	for	6 days
10 guests	for	3 days
30 guests	for	9 days

 Without working out the correct answer, explain why Huw's answer of 9 days is incorrect. [1]

Because if they only have enough food serve 20 guests for 6 days, the food should last shorter as there are comore guests. Work out the correct answer. (less than 6 days)^[2] TD Work out the correct answer. (ii) 3 X for 20 4 days ۲ days

Find the value of $\left(\frac{1}{5}\right)^{-3}$. $\frac{1}{\left(\frac{1}{5}\right)^{-3}} = \frac{1}{\frac{1^3}{5^3}} = \frac{5^3}{1} = 12.5$	[2]
Find the value of $256^{\frac{3}{4}}$. $\left(\sqrt[4]{2SG} \right)^{\frac{3}{4}} = \sqrt[4]{4} = 64$	[2]
Estimate the value of $50^{\frac{1}{2}}$. $\sqrt{99 = 7}$, $\sqrt{94 = 8}$ $\sqrt{50 \approx 7.1}$	[1]
	Find the value of $256^{\frac{3}{4}}$. $(4\sqrt{2SG})^{\frac{3}{2}} = 4^{\frac{3}{2}} = 64$ Estimate the value of $50^{\frac{1}{2}}$. $\sqrt{49} = 7$, $\sqrt{64} = 8$

- 6. Vera has a pot containing 4 red grapes and 6 green grapes. She takes a grape at random and eats it. She then takes another grape at random and eats it.
 - (a) Complete the probability tree to show this information.

(b) Work out the probability that the second grape Vera eats is green.

[3]

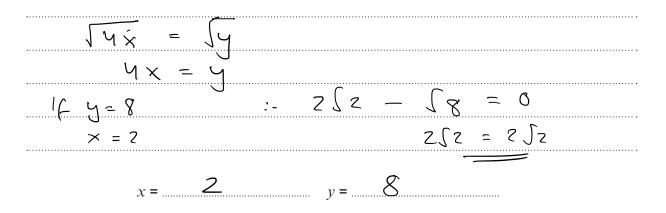
(O · Y	$\times \frac{2}{3}$	t	(0.6	× 2)	
5	<u>4</u> +	1				
	١S	3				
7) –	0 · 6				
Č	S					

[3]

7. (a) A 5-course banquet has 3 options for each course. The number of possible 5-course meals is m.

Find the value of <i>m</i> . $3^{\bigcirc} \longrightarrow$	J	:- 3 ⁴ = 27 ×	[2] S = 8\
		3 ⁵ = 81 ×	ς = 243
	m= 243		

The caterer for the banquet decides to change the menu so that there are only 2 options for the first course. The options for the other courses remain the same. (b)


The number of possible 5-course meals is now *pm*.

Find the value of p .		[2]
	× 2:3 × 81	px 243 = 162
Excluding first course	162:243	$p = \frac{2}{3}$
	p =Z	

8. <i>(a)</i>	Write $\sqrt{44} + \sqrt{275}$ in the form $k\sqrt{11}$, where k is an integer. [2]
······	Juy + J275
	$\sqrt{9\times11} + \sqrt{25\times11}$
	2511 + 5511
	$= 7 \int (1 / k) = 1$
(b)	Show that $\frac{(\sqrt{3}-1)^2}{\sqrt{3}}$ can be written as $c\sqrt{3}+d$, where <i>c</i> and <i>d</i> are values to be found. [3]
·····	$\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{\sqrt{3}} = \frac{3-\sqrt{3}-\sqrt{3}+1}{\sqrt{3}}$
	<u> </u>
	$= \frac{9 - 2\varsigma_3}{\varsigma_8} \times \frac{\varsigma_3}{\varsigma_3}$
•••••	λ β <u></u>
•••••	= <u>463 - 6</u> 3
	3
	= <u>453</u> - 2 B
••••••	
.	$C = \frac{L}{3}, \alpha = -2$
••••••	
·····	
·····	

 $(c) \qquad 2\sqrt{x} - \sqrt{y} = 0$

Find a value for x and a value for y so that \sqrt{x} and \sqrt{y} are surds. [2]

