

GCSE MATHEMATICS

S21-C300

Non-Calculator Assessment Resource K

Higher Tier

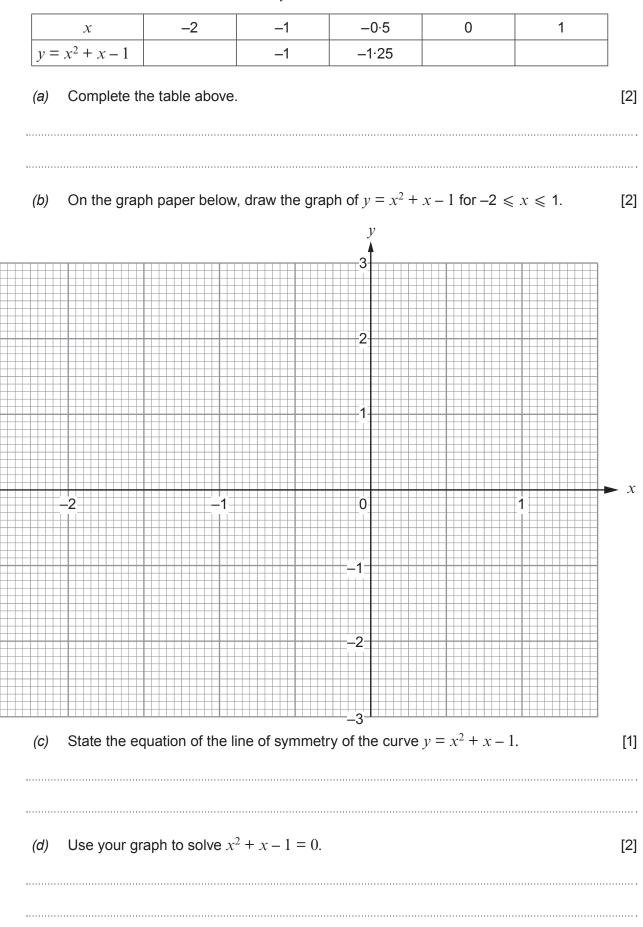
Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2h$


Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

(a)	Solve $19 - 4x = 11$.	
·····		
(b)	Solve $\frac{2x-3}{4} = 3x$.	
(C)	(i) Solve $3x + 2 > 5$.	
	(ii) Represent your answer to part <i>(c)</i> (i) on the number line below.	
		► x

2. The table shows some of the values of $y = x^2 + x - 1$ for $-2 \le x \le 1$.

(x + y) = 8x - 310 m	hake <i>x</i> the subject.	

(a)	(i) 0.8^{-1}	[1]
	(ii) 625 ¹ / ₄	[1]
	(iii) $\left(\frac{1}{64}\right)^{\frac{2}{3}}$	[2]
(b)	Write $81 \times \frac{3^0}{27^2}$ as a power of 3.	[2]
(c)	Simplify $\frac{(5ab^4)^3}{a^2}$.	[3]

4. (a) Find the value of each of the following.

5. The functions f(x) and g(x) are defined for x > 0 by

$$f(x) = \frac{8}{x} ,$$
$$g(x) = x + 5.$$

(a)	Find and simplify an expression for $ff(x)$.	[2]
(b)	Using your answer to part (a), or otherwise, explain the relationship between $f(x)$ and $f^{-1}(x)$.	[1]
(C)	Solve $g^{-1}f(x) = 11$.	[4]
		······································

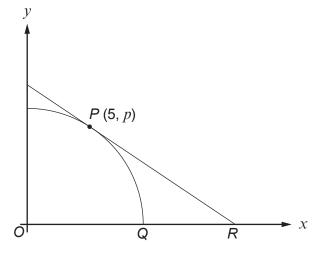


Diagram not drawn to scale

P (5, The a	diagram shows an arc of a circle with centre O and equation $x^2 + y^2 = 50$. <i>p</i>) lies on the circle. arc meets the <i>x</i> -axis at Q. angent to the circle at <i>P</i> meets the <i>x</i> -axis at <i>R</i> .	
(a)	Find the value of <i>p</i> , the <i>y</i> -coordinate of <i>P</i> .	[1]
(b)	Show that the equation of the tangent to the circle at P is $y = mx + 10$, where m is constant.	s a [4]
(c)	Find the exact length of <i>QR</i> .	[2]