

GCSE MATHEMATICS

S21-C300

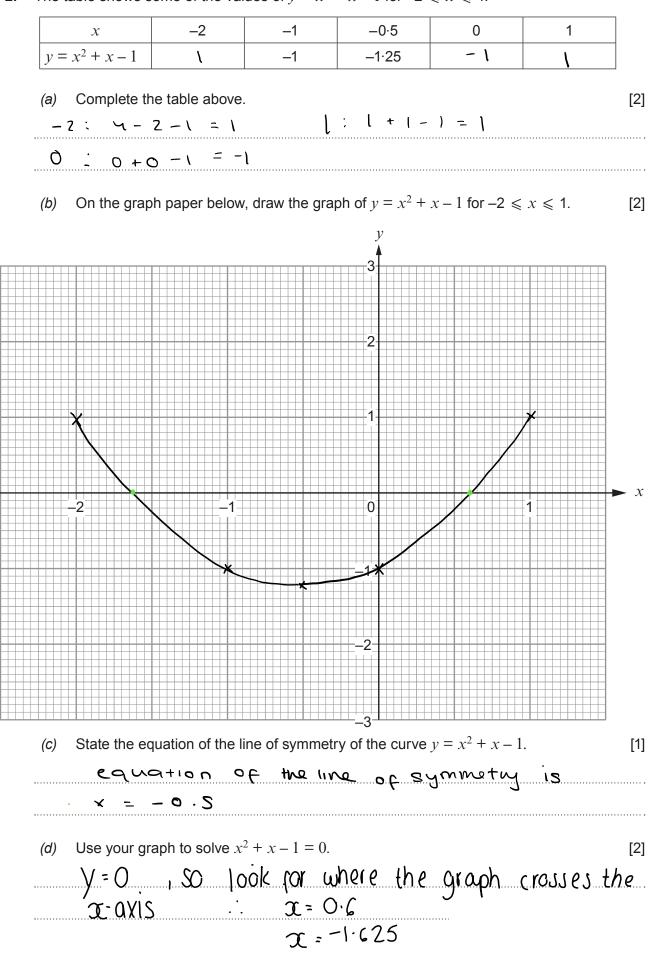
Non-Calculator Assessment Resource K

Higher Tier

Formula list

Area and volume formulae

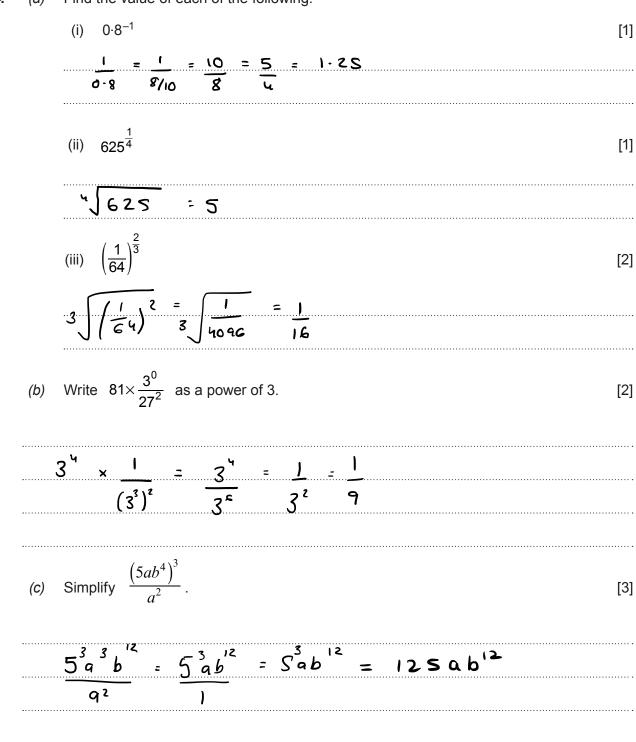
Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:


Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:


v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

(a) Solve $19 - 4x = 11$.	[2]
$ q - u_X = $	
$19 - 11 = 4 \times$	
8 = 4x	
Z = X	
(b) Solve $\frac{2x-3}{4} = 3x$.	[3]
$2 \times -3 = 12 \times$	
$-10 \times = 3$	
x = - <u>3</u>	
10	
(c) (i) Solve $3x + 2 > 5$.	[2]
3× >3	
× > \	
(ii) Represent your answer to part (c)(i) on the number line below.	[1]
o>	
	$ q - u \times = 1 $ $ q - u \times = u \times$ $8 = u \times$ $2 = \chi$ $(b) \text{Solve } \frac{2x-3}{4} = 3x.$ $2 \times -3 = 12 \times$ $-(0 \times = 3)$ $x = -3$ 10 $(c) (i) \text{Solve } 3x + 2 > 5.$ $3 \times > 3$ $\times > 1$ $(i) \text{Represent your answer to part } (c)(i) \text{ on the number line below.}$

2. The table shows some of the values of $y = x^2 + x - 1$ for $-2 \le x \le 1$.

3.	Rearrange $6(x + y) = 8x - 5$ to make x the subject.	[3]
	6x + 6y = 8x - 5	
	6x + 6y = 8x - 5. 6y + 5 = 2x	
	6y + 5 = x	
	2	
	3y + 5 = x	
	z	
		•••••

4. (a) Find the value of each of the following.

5. The functions f(x) and g(x) are defined for x > 0 by

$$f(x) = \frac{8}{x},$$
$$g(x) = x + 5.$$

(a) Find and simplify an expression for ff(x).

$$ff(x) = \frac{g}{g_{1x}} = \frac{g_{x}}{g} = x$$

.....

(b) Using your answer to part (a), or otherwise, explain the relationship between
$$f(x)$$
 and $f^{-1}(x)$. [1]

$$y = \frac{8}{x} \longrightarrow x = \frac{8}{y} \implies f^{-1}(x) = \frac{8}{x}$$

The function is its own inverse.

$$f(x) = f^{-1}(x)$$

(c) Solve
$$g^{-1}f(x) = 11.$$
 [4]
 $g(x) = y = x + S$
 $y - S = x$
 $x - S = y = g^{-1}(x)$
 $g^{-1}f(x) = g - 5. = 11$
 x
 $g = 16$
 x

$$\frac{1}{5} = \frac{8}{5}$$

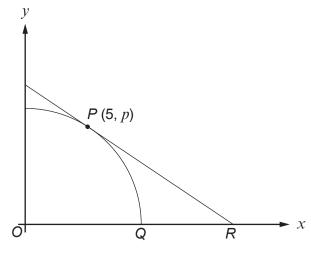
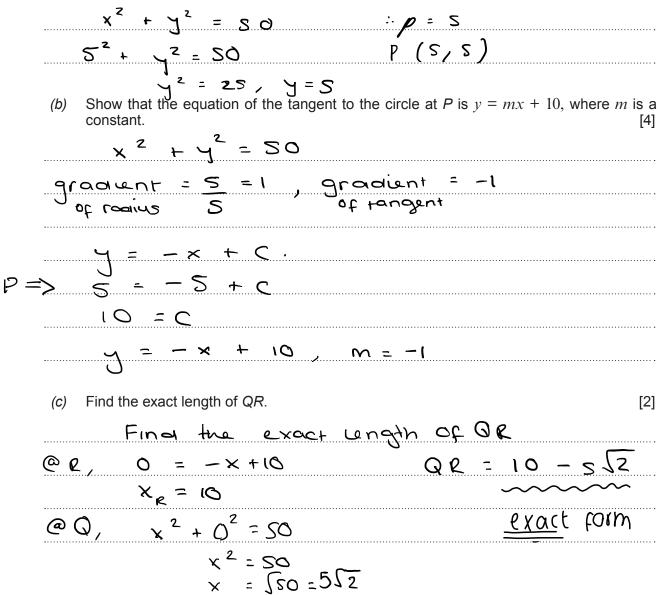



Diagram not drawn to scale

The diagram shows an arc of a circle with centre O and equation $x^2 + y^2 = 50$. P (5, p) lies on the circle. The arc meets the x-axis at Q. The tangent to the circle at P meets the x-axis at R. (a) Find the value of p, the y-coordinate of P. $x^2 + y^2 = 50$. $x^2 + y^2 = 50$.

[1]

