

GCSE MATHEMATICS

S21-C300

With Calculator Assessment Resource R

Higher Tier

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

Rashid plays a game. Each time he can score 1 point, 5 points or 10 points. The table shows the probability of each outcome.

Points	Probability
1	0.80
5	0.15
10	0.05

Rashid plays the game 40 times.

How many times does he expect to score more than 1 point? [3]					
P(P>1) = 0	· 20	0.05+0.15	Ξ	0.2	
h at one time	L				
40 × 0 · 2 -	8 times				
h in total		y			

2. ABCD is a parallelogram.

Diagram not drawn to scale

Work out the value of x and the value of y. You must show all your working.

[5]

40 = 6x + 20Sx 20 = xy + 3S + 6x + 20 = 180.... $y + 35 + 6 \times 20 + 20 = 180$ 175 + y = 180..... x = _____ 20 ° y = _____S °

3. Cheng stands at O and rolls a ball along the horizontal ground.

The ball stops at point *B*, which:

- •
- is equidistant from X and Y,
 lies on the bisector of angle XOY. •

Use a ruler and a pair of compasses to **construct** suitable lines and arcs to show the position of point *B*.

Construction arcs must be clearly shown.

[5]

4. The graph shows part of a quadratic curve.

5. *n* is a positive integer.

Prove that, for all possible values of *n*, $(2n - 1)^2$ is an odd number. _____ 2 (2n - i)(2n - 1)(2n - 1)..... 4n² - 2n - 2n +) Un² - Un + 1 Ux anything is Ruen -4n(n-1)+] Ξ = ever number +1 = odd numher

[2]

6. The mean of the data in the frequency table below is 2.7.

x	Frequency	fx
1	а	<u>A</u>
2	5	10
3	1	3
4	Ь	ЧЬ
5	2	۱0
6	3	18
Total	30	ULFUDFO

Work out the values of a and b. You must show all your working.

Mlan = 2-7	30 = 11 + 9 + b
	19 = a + b(1)
41 + 46 + a = 2-7	$\frac{19-b=a}{19-b=a}$
30	
41+4b+a=81	(3) = a + 4b = 40
(2) $4b + a = 40$	-a+b=19
	3b = 21
19 = a + 7	b=7
a= 12	

[5]

- 7. A rectangle has:
 - length *y* cm,
 - perimeter 30 cm,
 - area 55 cm².

(a) Form an equation in y and show that it can be simplified to $y^2 - 15y + 55 = 0.$ [3]

Perimeter = 30 = 2y + 2x X 30-2y=2x 15 - y = X y Aneg X 22 55 $\mathbf{\chi}$ -154 + 85 = 0 Use the quadratic formula to solve the equation given in part (a). (b) (i) Give your answers correct to 2 decimal places. You must show all your working [3] 62-490 formina 1 29 15 ~- 4(55) $\sqrt{15^2 - 4(55)}$ +15 + IS + 2(1) 2(1) 15 + 55 $= 8 \cdot 618$ 15 - 55 = 6.38.. 2 2 ~ 6.4 (2ap) $\approx 8.6(zap)$ 4: 6.4 DR 8.6 Interpret your answers in terms of the rectangle. [1] (ii) The two side of rectangle have the length of 6.4 and 8.6

8. (a) Show that $x = \sqrt{x+7}$ is a rearrangement of $x^2 - x - 7 = 0$. [1] $x = \sqrt{x+7}$ $\rightarrow x^2 = x + 7$ $\rightarrow x^2 - x - 7 = 0$

(b) Use the iteration formula

 $x_{n+1} = \sqrt{x_n + 7}$ starting with $x_1 = 3$

to find a solution of $x^2 - x - 7 = 0$. Give your answer correct to 2 decimal places. You must give all your calculated values of x_{n+1} .

x1 = 3	Somhon of
X 2 = \8+7 = \10	$\chi^2 - \chi - 7 = 0$
$X_2 = \sqrt{\int 10 + 7} = 3.1878$	to Zap 15
Xy = 3-19183846	x = 8.19
XS = 3.19246589	
$X_G = 3.192564156$	
X7 = 3.192579546	

[3]

9. The diagram shows a sector of a circle with radius $r \, \text{cm}$ and angle x° .

Diagram not drawn to scale

The arc length of the sector is 5π cm.

Show that $x = \frac{900}{r}$. (a) [2] $5\pi = 2\pi r \times \frac{x}{360}$ $\frac{S}{2} = r \times \frac{360}{360}$ 900 = (× 900 as required The area of the sector is 30π cm². (b) Calculate the value of x. [4] $\frac{\theta}{\pi r^2} \rightarrow 30 \pi = \frac{900}{r} \pi r^2$ Ξ A $10800 = 900 r^{2}$ 10800 = 900 r12 = r $x = \frac{900}{12} = 75$