

GCSE MATHEMATICS

S21-C300

With Calculator Assessment Resource M

Higher Tier

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Volume of a cone = $\frac{1}{3}\pi r^2h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time taken:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

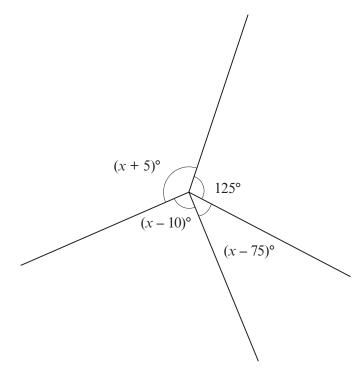
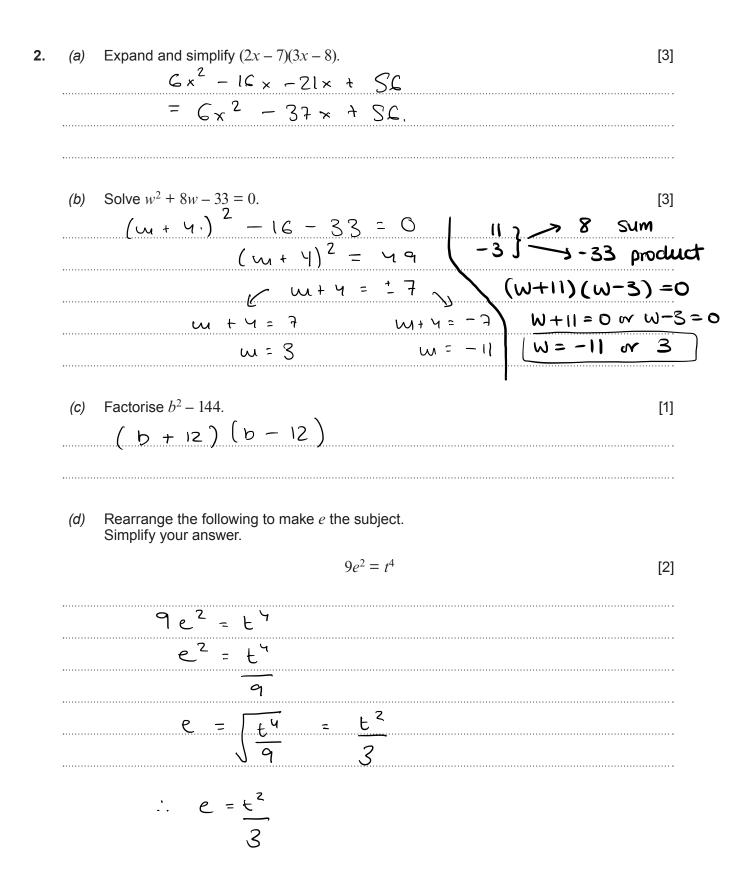



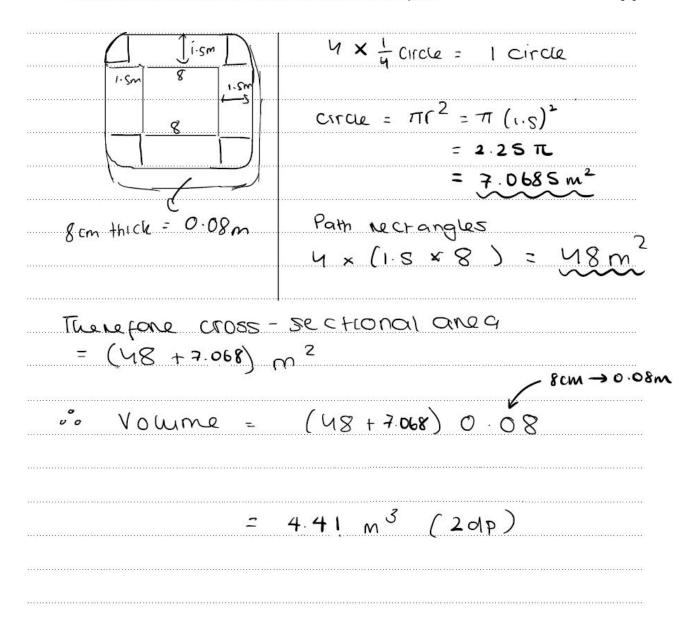
Diagram not drawn to scale

[3]

Write an equation in terms of x and solve it. You must show all your working.

(x - 7S)SED (x + 2)+(x - 10)++ 152 23S = x + S+ x - > Z FX - (0 23 S -5x -80 315 $\leq \chi$ 2 1050 ×

3.


A square lawn has a side of length 8 m. A builder is asked to make a path around the outside edge of the square lawn.

The plan was for a path of width *y* metres with all the edges of the path being straight. (a)

Find an expression for the area of this path in terms of *y*. Give your answer in its simplest form. [4] (8 + 24 Sides = z 1am = 8x8: anea ot 4m 8m 8 M Y Ľ Total anea of Jame = J (8 + 2y)2 + 164 + My 64 + 164 2 64 + 324 + 442 path anea Of hy2 + 32y +&4 - 64 + 32 4 44 (7+8)

- (b) Before the builder started, the plan was updated and the following agreed:
 - at each corner of the lawn the path should be a quarter circle,
 - the width of the path is to be 1.5 m,
 - the path is to be made of 8 cm thick concrete.

Calculate the volume of the concrete needed for the path.

[5]

4. *(a)* Factorise and hence solve the following equation.

$4x^2 + 16x + 15$	= 0			
(_{2×} + 3)(2×	+ S)			
<u>ا</u>	L			
2x + 3 = 0 2				
2x = - 3 OR	2x = - S			
$x = -\frac{3}{2}$	<u> </u>			
(b) Find the <i>n</i> th term of the following sequence.	2		[;	2]
7, 10, 15, 22, 31, 4	2,			
7, 10, 15, 22, 31, 4	1 2	3	. Λ)	
2 2 2 Z	V 1 4	9	N ²	
$\rightarrow n^2 + 6$	⁶ 7 10	IS	n ² +6	
Ali's average speed is 2 km/h. He left home at 9 a.m. At what time did Ali return home? Total distance = $3 \times +$ Total time = $\times +$	l km E hours		[4]
Avg speed = km/h				
Avg speed = $\frac{total distor \varphi}{total tinue}$ $2 = \frac{3x + 1}{\frac{x}{2} + 2} = \frac{6x + 2}{x + 12}$ $2\dot{x} + 2y = 6x + 2$ $22 = 4x$	9 _{am} =	= + 8 !7 :	$\frac{S \cdot S}{2} \neq G$ $\frac{S}{2} + S$ hours $\frac{1}{2} + S$ hours	
× = S.S				••••
Ali returned home at S· 45 pm				

[3]

(d) The expression $x^2 + 18x + 2$ has a minimum value. By **completing the square**, complete the statements below. You must show all your working.

[3]

$$(x + 9)^{2} - 81 + 2$$

 $(x + 9)^{2} - 79$

5. (*a*) The volume of a cone is equal to the volume of a sphere. The radius of the cone is four times the radius of the sphere.

Show that the perpendicular height of the cone is a quarter of the radius of the sphere. [4]

π τ1 (_s $f_c = 4f_s$ 3 πΓς ηrs 3 $4\pi r_{c}$ 3 = η S = $\frac{1}{1}$ $f_{S} = \frac{1}{2}$ f_{3} ti (3² - Is as required 0, The radii of two spheres are in the ratio 2 : 7. (b) The volume of the smaller sphere is 10.4 cm³. Calculate the volume of the larger sphere. [3] sphere r = Fr Large Zr Small Sphere 3 $V_{6} = 1 \times 10.4 \text{ cm}^{3} =$ 2r) $(7_{\rm f})^3$ 10.4 3435³ 5,8 VL=343 445 ٩ x 10 4 = 343 8 8 3 ٧, 343 = 445.9 cn 2 1 8