## 2021 ASSESSMENT MATERIALS



## AS MATHS

Exponentials and logs (Topic F)

Total number of marks:42

At the point (1, 0) on the curve  $y = \ln x$ , which statement below is correct?

| Tick (✓) | one | box. |
|----------|-----|------|
|----------|-----|------|

|                                         |              | [1 mark] |
|-----------------------------------------|--------------|----------|
| The gradient is negative and decreasing |              |          |
| The gradient is negative and increasing |              |          |
| The gradient is positive and decreasing | $\checkmark$ |          |
|                                         |              |          |

The gradient is positive and increasing

1 Find the gradient of the curve  $y = e^{-3x}$  at the point where it crosses the y-axis.

Circle your answer. 
$$\frac{dy}{dz} = -3e^{-3x}$$
  $z = 0$   $\frac{dy}{dz} = -3$  [1 mark]

3 Express as a single logarithm

$$2 \log_a 6 - \log_a 3$$

$$= \log_a 6^2 - \log_a 3$$

$$= \log_a \left(\frac{6^2}{3}\right)$$

$$= \log_a (2)$$

4 Show that, for x > 0

$$\log_{10} \frac{x^4}{100} + \log_{10} 9x - \log_{10} x^3 = 2(-1 + \log_{10} 3x)$$

$$\log_{10} \left(\frac{x^4}{100} \times 9x \times \frac{1}{x^3}\right) = \log_{10} \left(\frac{9}{100}x^2\right)$$

$$= \log_{10} \left(\frac{3}{10}x\right)^2 = 2\log_{10} \left(\frac{3}{10}x\right)$$

$$= 2\log_{10} 3x - 2\log_{10} 10$$

$$= 2\log_{10} 3x - 2$$

$$= 2\left(-1 + \log_{10} 3x\right)$$

## 7 The population of a country was 3.6 million in 1989.

It grew exponentially to reach 6 million in 2019.

Estimate the population of the country in 2049 if the exponential growth continues unchanged.

[2 marks]

$$P = ke^{mt}$$
 3.6 =  $ke^{m \times 0}$   $k = 3.6$ 
 $P = 3.6e^{mt}$  6 = 3.6  $e^{m(2019 - 1989)}$  = 3.6  $e^{30m}$ 
 $\frac{5}{3} = e^{30m}$   $m = 5$  = 30m

 $m = 0.017$ 
 $P = 3.6e^{0.019t}$   $P = 3.6e^{0.019(2049 - 1989)}$ 

= 10 | [Omillion]

8 (a) Using  $y = 2^{2x}$  as a substitution, show that

$$16^x - 2^{(2x+3)} - 9 = 0$$

can be written as

$$y^2 - 8y - 9 = 0$$
 [2 marks]

$$|b^{x} - 2^{(2x+3)} - 9 = 0$$

$$(2^{4})^{x} - (2^{2x} \times 2^{3}) - 9 = 0$$

$$2^{1\times 2x} - 8\times 2^{2x} - 9 = 0$$

$$2^{2x\times 2} - 8\times 2^{2x} - 9 = 0$$

$$|y^{2} - 8y - 9 = 0$$

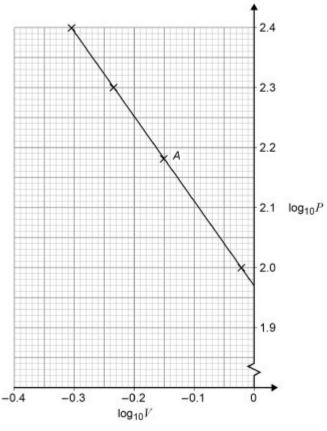
8 Maxine measures the pressure, P kilopascals, and the volume, V litres, in a fixed quantity of gas.

Maxine believes that the pressure and volume are connected by the equation

$$P = cV^d$$

where c and d are constants.

Using four experimental results, Maxine plots  $\log_{10}P$  against  $\log_{10}V$ , as shown in the graph below.



8 (a) Find the value of P and the value of V for the data point labelled A on the graph.

$$P \rightarrow Y$$
  $log P = 2.18$   $P = 151.36$   $P = 150$   
 $log V = -0.15$   $V = 0.708$ 

8 (b) Calculate the value of each of the constants c and d.

$$P = cV^{d}$$
  $log P = dlog V + log e$ 

$$= 2.18 = d(-0.15) + log c$$

$$= 2.0 = d(-0.02) + log c$$

$$= 0.18 = -0.13 d$$

$$= -1.38$$

8 (c) Estimate the pressure of the gas when the volume is 2 litres.

[2 marks]

[4 marks]

As part of an experiment, Zena puts a bucket of hot water outside on a day when the outside temperature is 0°C.

She measures the temperature of the water after 10 minutes and after 20 minutes. Her results are shown below.

| Time (minutes)                | 10 | 20 |
|-------------------------------|----|----|
| Temperature (degrees Celsius) | 30 | 12 |

Zena models the relationship between  $\theta$ , the temperature of the water in °C, and t, the time in minutes, by

$$\theta = A \times 10^{-kt}$$

where A and k are constants.

10 (a) Using t = 0, explain how the value of  $\Lambda$  relates to the experiment.

$$\theta = A \times 10^{-K \times 0} = A$$
A is original temperature

10 (b) Show that

$$\begin{aligned}
\log_{10} \theta &= \log_{10} A - kt \\
\theta &= A \times 10^{-kt} & \log_{10} \theta &= \log_{10} (A \times 10^{-kt}) \\
\log_{10} \theta &= \log_{10} A - \log_{10} 10^{kt} & \log_{10} \theta &= \log_{10} A - kt
\end{aligned}$$

10 (c) Using Zena's results, calculate the values of A and k.

10 (d) Zena states that the temperature of the water will be less than 1°C after 45 minutes.

Determine whether the model supports this statement.

$$0 = 75 \times 10^{-0.0398 \times t}$$

$$0 = 75 \times 10^{-0.0398 \times 45} = 1.21 \cdot C$$

$$1.21 \cdot C > 1 \cdot C \text{ so model doesn't support}$$

$$\text{Statement}$$

10 (e) Explain why Zena's model is unlikely to accurately give the value of  $\theta$  after 45 minutes.

[1 mark]

temperature is unlikely to drop below the room temperature 12 Trees in a forest may be affected by one of two types of fungal disease, but not by both.

The number of trees affected by disease A,  $n_A$ , can be modelled by the formula

$$n_{\rm A} = a {\rm e}^{0.1t}$$

where t is the time in years after 1 January 2017.

The number of trees affected by disease B,  $n_{\mathrm{B}}$ , can be modelled by the formula

$$n_{\rm B} = b e^{0.2t}$$

On 1 January 2017 a total of 290 trees were affected by a fungal disease.

On 1 January 2018 a total of 331 trees were affected by a fungal disease.

12 (a) Show that b = 90, to the nearest integer, and find the value of a.

$$Ae^{0.1\times0} + bC^{0.2\times0} = a+b = 290$$
  $a=290-b$ 

$$Ae^{0.1\times1} + be^{0.2\times1} = 331 \quad (290-b)e^{0.1} + be^{0.2} = 331$$

$$290e^{0.1} + (e^{0.2} - e^{0.1})b = 331 \quad (e^{0.2} - e^{0.1})b = 331 - 290e^{0.1}$$

$$b = 90 \qquad a = 200$$

12 (b) Estimate the total number of trees that will be affected by a fungal disease on 1 January 2020.

$$M_A = 200e^{0.1t} = 200e^{0.1xS} = 270$$

$$M_B = 40e^{0.2t} = 40e^{0.2x3} = 145$$
[1 mark]

12 (c) Find the year in which the number of trees affected by disease B will first exceed the number affected by disease A.

$$90e^{0.2t} > 200e^{0.1t}$$
 $e^{0.1t} > \frac{20}{9}$ 
 $u = \frac{20}{9} > 0.1t$ 
 $v = \frac{20}{9} >$ 

12 (d) Comment on the long-term accuracy of the model.

[1 mark]