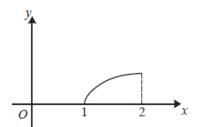
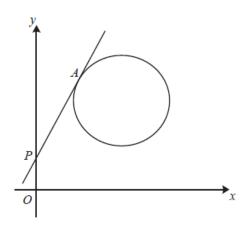
A Level Mathematics A


H240/01 Pure Mathematics

Question Set 5

- 1 (a) For a small angle θ , where θ is in radians, show that $2\cos\theta + (1-\tan\theta)^2 \approx 3-2\theta$. [3]
 - (b) Hence determine an approximate solution to $2\cos\theta + (1-\tan\theta)^2 = 28\sin\theta$. [2]
- 2 A cylindrical metal tin of radius r cm is closed at both ends. It has a volume of 16000π cm³.
 - (a) Show that its total surface area, $A \text{ cm}^2$, is given by $A = 2\pi r^2 + 32000\pi r^{-1}$. [4]
 - (b) Use calculus to determine the minimum total surface area of the tin. You should justify that it is a minimum. [6]
- Prove by contradiction that there is no greatest multiple of 5. [3]
- Two students, Anna and Ben, are starting a revision programme. They will both revise for 30 minutes on Day 1. Anna will increase her revision time by 15 minutes for every subsequent day. Ben will increase his revision time by 10% for every subsequent day.
 - (a) Verify that on Day 10 Anna does 94 minutes more revision than Ben, correct to the nearest minute.
 [3]

Let Day X be the first day on which Ben does more revision than Anna.


- (b) Show that X satisfies the inequality $X > \log_{1.1}(0.5X + 0.5) + 1$. [3]
- (c) Use the iterative formula $x_{n+1} = \log_{1.1}(0.5x_n + 0.5) + 1$ with $x_1 = 10$ to find the value of X. You should show the result of each iteration. [3]
- (d) (i) Give a reason why Anna's revision programme may not be realistic. [1]
 - (ii) Give a different reason why Ben's revision programme may not be realistic. [1]

The diagram shows the curve $y = \sin(\frac{1}{2}\sqrt{x-1})$, for $1 \le x \le 2$.

- (a) Use rectangles of width 0.25 to find upper and lower bounds for $\int_{1}^{2} \sin(\frac{1}{2}\sqrt{x-1}) dx$. Give your answers correct to 3 significant figures. [4]
- **(b)** (i) Use the substitution $t = \sqrt{x-1}$ to show that $\int \sin(\frac{1}{2}\sqrt{x-1}) dx = \int 2t \sin(\frac{1}{2}t) dt$. [3]
 - (ii) Hence show that $\int_{1}^{2} \sin(\frac{1}{2}\sqrt{x-1}) dx = 8\sin(\frac{1}{2}) 4\cos(\frac{1}{2})$. [4]

6

The diagram shows a circle with equation $x^2 + y^2 - 10x - 14y + 64 = 0$. A tangent is drawn from the point P(0,2) to meet the circle at the point A. The equation of this tangent is of the form y = mx + 2, where m is a constant greater than 1.

- (a) (i) Show that the x-coordinate of A satisfies the equation $(m^2 + 1)x^2 10(m + 1)x + 40 = 0$. [2]
 - (ii) Hence determine the equation of the tangent to the circle at A which passes through P.[4]

A second tangent is drawn from P to meet the circle at a second point B. The equation of this tangent is of the form y = nx + 2, where n is a constant less than 1.

Total Marks for Question Set 5: 50 Marks

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge