

A Level Mathematics A H240/01 Pure Mathematics

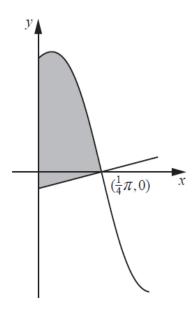
Question Set 2

1 In this question you must show detailed reasoning.

Find the two real roots of the equation $x^4 - 5 = 4x^2$. Give the roots in an exact form. [4]

- Prove algebraically that $n^3 + 3n 1$ is odd for all positive integers n. [4]
- 3 The equation of a circle is $x^2 + y^2 + 6x 2y 10 = 0$.
 - (a) Find the centre and radius of the circle. [3]
 - (b) Find the coordinates of any points where the line y = 2x 3 meets the circle $x^2 + y^2 + 6x 2y 1$ 0 = 0. [4]
 - (c) State what can be deduced from the answer to part (ii) about the line y = 2x 3 and the circle $x^2 + y^2 + 6x 2y 1$ 0 = 0. [1]
- (a) Find the first three terms in the expansion of $(4-x)^{-\frac{1}{2}}$ in ascending powers of x. [4]
 - (b) The expansion of $\frac{a+bx}{\sqrt{4-x}}$ is 16-x Find the values of the constants a and b. [3]
- The function f is defined for all real values of x as $f(x) = c + 8x x^2$, where c is a constant.
 - (a) Given that the range of f is $f(x) \le 19$, find the value of c. [3]
 - (b) Given instead that ff(2) = 8, find the possible values of c. [4]
- A curve has parametric equations $x = t + \frac{2}{t}$ and $y = t \frac{2}{t}$, for $t \neq 0$.
 - (a) Find $\frac{dy}{dt}$ in terms of t, giving your answer in its simplest form. [4]
 - (b) Explain why the curve has no stationary points. [2]

7 In this question you must show detailed reasoning.



The diagram shows the curve $y = \frac{4\cos 2x}{3-\sin 2x}$, for $x \ge 0$, and the normal to the curve at the point $(\frac{1}{4}\pi,0)$. Show that the exact area of the shaded region enclosed by the curve, the normal to the curve and the *y*-axis is $\ln \frac{9}{4} + \frac{1}{128}\pi^2$. [10]

Total Marks for Question Set 2: 50 Marks

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

of the University of Cambridge