OCR

Oxford Cambridge and RSA

A Level Mathematics B (MEI)
H640/03 MEI Pure Mathematics and Comprehension

Question Set 4



1  (a) Showthatifa=1andb > 1thena” < b°.
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(b) Find integer values of @ and b with » > @ >> 1 and 4" not greater than b° (a counter example
to the conjecture given in lines 7-8). b: Ll’ [1]

In this question you must show detailed reasoning.
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Show thatf —dx = ln)’[—l as given in line 37.
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Show that e” 1s an increasing functlon for all values of x, as stated in line 39. [2]
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(a) Show that the only stationary pomnt on the curve y = ln_\ occurs where x = e, as given 1n

line 45 DL |—|poy _ . INL=) [3]
> X X 0 iz
(b) Show that the stationary point 1s a maximum. : [3]
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(c) It follows from part (b) that, for any positive number a with a # e,

Ine _ Ina
e = arc

Use this fact to show that e > a*
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Total Marks for Question Set 4: 15



Resource Materials

Question Set No: 4
Which is bigger?

Which 1s bigger: 7% or e”? Using a calculator confirms that e” is the larger, but how can this be
proved without the use of a calculator?

Simpler examples

It is often helpful in mathematics to consider simpler examples. It is easy to work out that 3% > 4%
In the expression 3*. 3 is the base and 4 is the exponent. Working with integers greater than 1. it is
easy to find many examples where a” > b* if a < b. That is. using the smaller base and the larger
exponent gives the larger result. This might lead us to conjecture that a” > b* if @ < b and both
a and b are integers greater than 1. However, 1t 1s also possible to find counter examples to this
conjecture.

Exponents can also be rational numbers. and 1n general x+ denotes ({/x ) where p and g are integers
and ¢ 1s positive. So, any rational power of a positive number. x, can be defined. However. both e
and 7 are wrational numbers. Considening the original question about 7° and e” raises the issue of
what 1s meant by an 1rrational power of a number.

Extending the definition of power to irrational numbers
What, for example, 1s meant by 27?

An irrational number corresponds to a non-recumring infinite decimal. Rounding the decimal gives
a rational approximation to the irrational number. For example, the following sequence gives
mncreasingly accurate approximations to 7.

3. 3.1, 3.14. 3.142. 3.1416, 3.14159.

Using a spreadsheet gives a sequence of approximations to 2” as shown in Fig. C1. The limit of this
sequence of approximations is the value of 2”. This limit cannot be evaluated with a spreadsheet
but 1t 1s, 1n principle. possible to find the value to any required degree of accuracy.
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3.1/8.574188
3.14| 8.815241
3.142 8.82747
3.1416 8.825023
3.14159 | 8.824962
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Fig. C1

2* and x* are increasing functions of x for x > 0 and this allows us to deduce that 77 > 27 as
follows.
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We know that 7 1s between 3 and 3.142 25
7 <3.142 = 27 < 23142 =8 82747

>3=2a2>32=9

So z° > 9 > 8.82747 > 2"

Hence 7° > 27

Which is bigger: 77° or e”? 30

An indirect method, using calculus, enables us to prove that e” is larger than 7z°. Fig. C2 shows
the curve y = % i the first quadrant together with the rectangle with vertices at the points (e, 0).

(e, %). (7[, %) and (7, 0). We use the fact that the area under the curve between e and 7 1s less than
the area of this rectangle.
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Fig. C2

The area of the rectangle 1s le(iz —e) 35
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e 1s an increasing function for all values of x
hence 7 < % 40

Assunung that the usual rules of indices apply to wrational powers of irrational numbers, raising
both sides of the mequality to the power e gives the desired result.

Using a stmilar method, it can be shown that e? > a® for any positive number a # e.

An alternative method for showing that e® > a* for any positive number a 1s to show that the only

stationary point on the curve y = lnTr (a maximum) occurs where x = e. 45
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