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2 A curve has equation y = x® + 4x3 4 7x + ¢ where g is a positive constant.
Find the gradient of the curve at the point where x =0

Circle your answer.
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13 A curve, C, has equation
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Show that C has exactly one stationary point.
Fully justify your answer.
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15 A curve has equation y = x3 — 48x
The point A on the curve has x coordinate —4

The point B on the curve has x coordinate —4 + h

15 (a) Show that the gradient of the line ABis h? — 12h
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15 (b) Explain how the result of part (a) can be used to show that A is a stationary point on
the curve.
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10 The volume of a spherical bubble is increasing at a constant rate.

Show that the rate of increase of the radius, r, of the bubble is inversely proportional
to 2

Volume of a sphere = %nr?’
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12 A curve C has equation

x3 siny + cosy = Ax

where A4 is a constant.

C passes through the point P(v@, %)

12 (a)  Show that 4 =2
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[2 marks]
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12 (b) (i) Show that
(b) () dx r3cosv—siny
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12 (b) (ii) Hence, find the gradient of the curve at P.
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12 (b) (iii) The tangent to C at P intersects the x-axis at Q.
Find the exact x-coordinate of Q.
[4 marks]
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6 A function f is defined by f(x) = \h
X —

6 (a) State the maximum possible domain of f.
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6 (b) Use the quotient rule to show that f'(x) = x—2 5
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6 (c) Show that the graph of y = f(x) has exactly one point of inflection.
[7 marks]
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6 (d) Write down the values of x for which the graph of y = f(x) is convex.
[1 mark]
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