

GCSE Chemistry B (Twenty First Century Science)

J258/04 Depth in chemistry (Higher Tier)

Question Set 26

1. Sodium oxide, Na₂O and magnesium oxide, MgO, are both oxides with ionic bonds. When ionic bonds form, electrons pass from one atom to another to form ions.

Fig. 5.1 and **Fig. 5.2** show the arrangement of electrons in the **atoms** and **ions** for each oxide.

Sodium oxide Na ₂ O								
Atoms (before bonding)	lons (after bonding)							
two sodium atoms	two sodium ions							
Na XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Na XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
one oxygen atom	one oxygen ion							
0	0							

Fig. 5.1

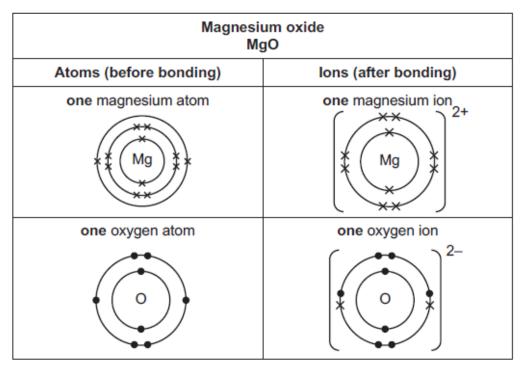


Fig. 5.2

(a)*	Describe and explain how ionic bonds in sodium oxide (Fig. 5.1) and oxide (Fig. 5.2) form, and explain why the two oxides have different for	0	
	Use ideas about electrons and electron shells in your answer.		[6]
(b)	Sodium oxide and magnesium oxide are both ionic compounds.		[~]
	Which statements about both sodium oxide and magnesium oxide and	e correct?	
	Tick (✓) two boxes.		
	Their boiling points are > 100 °C.		
	They conduct electricity when molten.		
	They have very low melting points.		
	They have weak intermolecular forces between their particles.		
	They react with dilute acids to give a salt, water and carbon dioxide.		[2]

Total Marks for Question Set 26: 8

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li Ithium 6.9	4 Be beryllum 9.0											5 B boton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O coygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
Na sodium 23.0	Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	Cl chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe lion 55.8	27 Co cobet 58.9	28 Ni nkkel 58.7	29 Cu copper 63.5	30 Zn zinc 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rutherium 101.1	45 Rh modum 102.9	46 Pd pelladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn tin 118.7	51 Sb antimory 121.8	52 Te wturium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir idum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrlum	108 Hs hassium	109 Mt metrerium	110 Ds darmeteditum	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv Ivermorium		

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

opportunity.

of the University of Cambridge