

GCSE Chemistry B (Twenty First Century Science)

J258/04 Depth in chemistry (Higher Tier)

Question Set 23

- **1.** Sundip passes electricity through solutions of some ionic compounds and finds out what products are formed at the positive and negative electrodes.
 - (a) Here are Sundip's results.

Solution	Product at positive electrode	Product at negative electrode				
concentrated sodium chloride	chlorine gas	hydrogen gas				
dilute sodium chloride	oxygen gas	hydrogen gas				
dilute copper chloride	chlorine gas	copper metal				
concentrated copper sulfate	oxygen gas	copper metal				
concentrated copper chloride						
dilute sodium sulfate						

- (i) Complete the table by predicting the products formed at each electrode when electricity is passed through concentrated copper chloride and dilute sodium sulfate.
- (ii) Sundip uses tests to identify the gases formed in her experiments.

Draw lines to connect each gas to its correct test and result.

Test and result

relights a glowing splint

chlorine

makes a lighted splint go 'pop'

oxygen

turns lime water milky

turns blue litmus red and then bleaches it

turns red litmus blue and then bleaches it

- (iii) Explain why, at the negative electrode:
 - copper metal is formed when electricity is passed through dilute copper chloride, but
 - **hydrogen** gas is formed when electricity is passed through dilute sodium chloride.

[3]

[2]

- **(b)** This is a list of apparatus Sundip uses to pass electricity through the solution of dilute sodium chloride:
 - electrodes
 - · leads and clips
 - a battery
 - a beaker
 - the solution of sodium chloride.

Draw a labelled diagram to show how Sundip sets up her experiment to pass electricity through the solution of dilute sodium chloride.

[2]

Total Marks for Question Set 23: 9

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li tthium 6.9 11 Na	4 Be beryllum 9.0 12 Mg											5 B boton 10.8 13 Al	6 C carbon 12.0 14 Si	7 N nitrogen 14.0 15 P	8 O 00000000 16.0 16 S	9 F fluorine 19.0 17 C <i>l</i>	10 Ne neon 20.2 18 Ar
sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	ohlorine 35.5	argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobst 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zinc 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As ersenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr ziroonium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rufterium 101.1	45 Rh modum 102.9	46 Pd paladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te wturium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Hidum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordum	105 Db dubnium	106 Sg seeborgium	107 Bh bohilum	108 Hs hassium	109 Mt meitrerium	110 Ds damstadtium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge