


GCSE Chemistry B (Twenty First Century Science)

J258/04 Depth in chemistry (Higher Tier)

Question Set 19

1. Mia wants to investigate the trend in reactivity for Group 7 elements.

She adds chlorine water to a solution of potassium bromide.

potassium bromide solution

She looks for a temperature change and a colour change.

She also has access to these solutions.

iodine water	potassium iodide
bromine water	potassium bromide
chlorine water	potassium chloride

Describe what Mia needs to do to find out the trend in reactivity of the Group 7 elements **and** describe what observations and conclusions she should expect.

[6]

Total Marks for Question Set 19: 6

Resource Materials

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2	_		Key omic numl Symbol name ve atomic								13	14	15	16	17	18 2 He helium 4.0
3 Li Bhium 6.9	4 Be beryllum 9.0											5 B boton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 0 ∞xygen 16.0	9 F fluorine 19.0	10 Ne 20.2
11 Na ^{sodium} 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silkon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	17 Cl chlorine 35.5	18 Ar ^{argon} 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandum 45.0	22 Ti ttanium 47.9	23 V venedium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobat 58.9	28 Ni ^{nickel} 58.7	29 Cu 63.5	30 Zn zine 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb ^{nioblum} 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rutherium 101.1	45 Rh ^{rhodium} 102.9	46 Pd paladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In ^{indum} 114.8	50 Sn 118.7	51 Sb antimony 121.8	52 Te witurium 127.6	53 I icdine 126.9	54 Xe ^{xunon} 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re ftenium 186.2	76 Os csmium 190.2	77 Ir idum 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At estative	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf ruthenfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitrorium	110 Ds darmatactium	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv Ivermorium		

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge