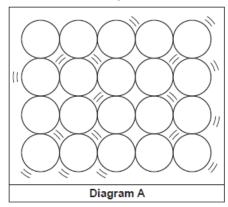
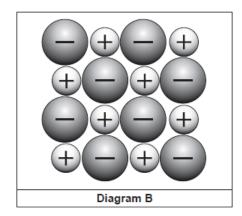
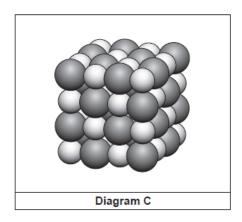


GCSE Chemistry B (Twenty First Century Science)


J258/04 Depth in chemistry (Higher Tier)


Question Set 18


1. Li is planning a presentation on sodium chloride.

She looks for a diagram to show the bonding, structure, movement and arrangement of particles in solid sodium chloride.

She finds these diagrams.

Discuss the **advantages** and **disadvantages** of using each diagram to represent solid sodium chloride **and** outline the features that an ideal diagram should have.

[6]

Total Marks for Question Set 18: 6

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li sthium 6.9	4 Be beryllum 9.0											5 B boron 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O coygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
Na sodium 23.0	Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	Al aluminium 27.0	Si silicon 28.1	P phosphorus 31.0	S suffur 32.1	C1 chlorine 35.5	Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe lon 55.8	27 Co cobet 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zine 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh modium 102.9	46 Pd pelladium 106.4	47 Ag siver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn in 118.7	51 Sb antimony 121.8	52 Te wturium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba berlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir idum 192.2	78 Pt pletinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At estatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordum	105 Db dubnium	106 Sg seeborgium	107 Bh bohilum	108 Hs hassium	109 Mt meitnerium	110 Ds damstadtium	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv livermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge