

GCSE Chemistry B (Twenty First Century Science)

J258/04 Depth in chemistry (Higher Tier)

Question Set 8

- 1. Alex does some experiments to make some salts.
 - In his first experiment, he uses 0.2 moles of magnesium oxide. He works out the (a) mass of magnesium oxide in 0.2 moles.

He uses this equation: number of moles = mass of substance $(g) \div$ relative formula mass (g)

Use the equation and the Periodic Table to work out the mass of magnesium oxide in 0.2 moles.

Give your answer to 1 decimal place.

[3]

Mass = g

In another experiment, Alex reacts 4.0 g copper oxide with hydrochloric acid to (b) make copper chloride. This is an equation for the reaction.

copper oxide + hydrochloric acid \rightarrow copper chloride + water

 $CuO + 2HCl \rightarrow CuCl_2 + H_2O$

Alex works out the mass of copper chloride he can make in the experiment.

He uses these relative formula masses.

Name of compound	Formula	Relative formula mass					
copper oxide	CuO	79.5					
copper chloride	CuCl ₂	134.5					

What mass of copper chloride can be made from 4.0 g of copper oxide?

Use the relative formula masses and the equation to help you.

Give your answer to 2 decimal places.

Mass =	 a	[4]
maoo	 9	1-1

(c)		Alex adds 4.0 g of solid copper oxide to 25.0 cm ₃ dilute hydrochloric acid.	
		At the end of the experiment, Alex sees that there is a problem because he has some unreacted solid left.	
	<i>(</i> 1)		

- How will this problem affect his actual yield? (i) [1]
- How could Alex change his experiment to solve this problem? (ii) [1]

Total Marks for Question Set 8: 9

Resource Materials

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2	_		Key omic numl Symbol name ve atomic								13	14	15	16	17	18 2 He helium 4.0
3 Li Bhium 6.9	4 Be beylium 9.0											5 B boton 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 0 ‱gen 16.0	9 F fluorine 19.0	10 Ne 20.2
11 Na ^{sodium} 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silkon 28.1	15 P phosphorus 31.0	16 S sulfur 32.1	17 Cl chlorine 35.5	18 Ar ergon 39.9
19 K potassium 39.1	20 Ca catclum 40.1	21 Sc scandum 45.0	22 Ti ttanium 47.9	23 V venedium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobat 58.9	28 Ni ^{nickel} 58.7	29 Cu 63.5	30 Zn zine 65.4	31 Ga gallum 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb ^{nioblum} 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rutherium 101.1	45 Rh ^{rhodium} 102.9	46 Pd paladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In ^{indum} 114.8	50 Sn ^{tin} 118.7	51 Sb antimony 121.8	52 Te witurium 127.6	53 I icdine 126.9	54 Xe xencn 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re ftenium 186.2	76 Os csmium 190.2	77 Ir idum 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At estative	86 Rn radon
87 Fr francium	88 Ra radium	89—103 ectinoids	104 Rf ruthenfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metrorium	110 Ds darmatactium	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv Ivermorium		

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge