

GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 35

- 1 Titanium is used for hip replacements.
 - (a) Titanium's strength comes from its metallic structure as shown in Fig. 11.1.

Use Fig. 1.1 to explain why the metallic bonds in titanium are very strong.

[2]

(b) Titanium is a transition metal. Calcium is **not** a transition metal.

Which two statements are correct about both calcium and titanium?

Tick (\checkmark) **two** boxes.

They both conduct electricity.

They both form cations.

They both form coloured ions in solution.

They both form ions with several different charges.

They both react with cold water.

[2]

(c) Titanium can be made from titanium oxide by two methods.

Method 1 uses magnesium reacting with titanium oxide:

2Mg +
$$TiO_2 \rightarrow Ti$$
 + 2MgO

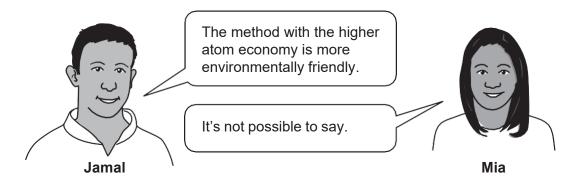
Method 2 uses the electrolysis of titanium oxide:

$$TiO_2 \rightarrow Ti + O_2$$

The atom economies of the two methods can be compared using this equation:

atom economy =
$$\frac{\text{mass of atoms in desired product}}{\text{Total mass of atoms in react}} \times 100\%$$

(i) What does atom economy tell us about a reaction?


[1]

(ii) Calculate the atom economy of Method 2.

Give your answer to 2 significant figures.

Atom economy = % [3]

- (iii) Explain, without further calculation, which method has the higher atom economy.
- (iv) Jamal and Mia discuss atom economy.

Evaluate Jamal and Mia's comments.

[3]

[1]

(d) Magnesium oxide (MgO) is formed in **Method 1**.

Complete **Fig. 11.2** to show the 'dot and cross' diagrams for an Mg2+ ion and an O2– ion.

Show all the electrons.

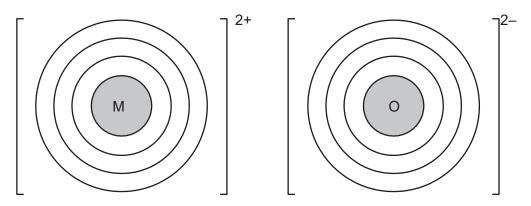


Fig. 1.2

[2]

Total Marks for Question Set 35:14

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	2 He helium 4.0
3 Li	4 Be	· '				•						5 B	6 C	7 N	8 O	9 F	10 Ne
6.9	beryllium 9.0											10.8	carbon 12.0	nitrogen 14.0	0xygen 16.0	fluorine 19.0	neon 20.2
11 Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffer 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K potassium 39.1	Ca calcium 40.1	Sc scandium 45.0	Ti titanium 47.9	vanadium 50.9	Cr chromium 52.0	Mn manganese 54.9	Fe ion 55.8	Co cobst 58.9	Ni nickel 58.7	Cu copper 63.5	Zn zine 65.4	Ga gallium 69.7	Ge germanium 72.6	As arsenic 74.9	Se selenium 79.0	Br bromine 79.9	Kr krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb rubidium 85.5	Sr strontium 87.6	Y ythium 88.9	Zr zirconium 91.2	Nb niobium 92.9	Mo molybdenum 95.9	Tc technetium	Ru ruthenium 101.1	Rh rhodium 102.9	Pd paladium 106.4	Ag silver 107.9	Cd cadmium 112.4	In indum 114.8	Sn tin 118.7	Sb antimony 121.8	Te telurium 127.6	I iodine 126.9	Xe xenon 131.3
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs caesium 132.9	Ba barium 137.3	lanthanoids	Hf hafnium 178.5	Ta tantalum 180.9	tungsten 183.8	Re menium 186.2	Os osmium 190.2	Ir Hidum 192.2	Pt platinum 195.1	Au gold 197.0	Hg mercury 200.6	T <i>I</i> thallium 204.4	Pb lead 207.2	Bi bismuth 209.0	Po polonium	At astatine	Rn
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metrerium	110 Ds darmetactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv Ivermorium		

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

opportunity.

of the University of Cambridge