

GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 34

(a)		Lithium reacts with chlorine to form lithium chloride.	
		2Li + Cl₂ → 2LiCl	
		What mass of chlorine reacts with 1 g of lithium?	
		Use the equation: number of moles = $\frac{\text{mass of substance}}{\text{relative formula mass (g)}}$	
		Give your answer to 1 decimal place.	
		Mass of chlorine =g	[3]
(b)		Lithium reacts with water to form lithium hydroxide (LiOH) and a gas.	
		Write a balanced symbol equation for this reaction.	[2]
(c)		Lithium is made by the electrolysis of molten lithium chloride.	
		Name the product formed at each electrode.	[2]
(d)		Nina does some experiments with chlorine.	
	(i)	Nina wants to use a displacement reaction to show chlorine is more reactive than bromine.	
		Describe what Nina needs to do and what she will see.	
			[2]
	(ii)	Nina has to be careful when using chlorine in her experiments.	
		State one precaution she must take and why the precaution is needed.	
			[2]
tal N	lark	s for Question Set 34 : 11	

Lithium-ion batteries are used in phones, tablets and electric cars.

To

1

Resource Materials

The Periodic Table of the Elements

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass								13	14	15	16	17	2 He helium 4.0	
3 Li	4 Be	· '				•						5 B	6 C	7 N	8 O	9 F	10 Ne
6.9	beryllium 9.0											10.8	carbon 12.0	nitrogen 14.0	0xygen 16.0	fluorine 19.0	neon 20.2
11 Na sodium 23.0	12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 AI aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffur 32.1	17 Cl chlorine 35.5	18 Ar argon 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K potassium 39.1	Ca calcium 40.1	Sc scandium 45.0	Ti titanium 47.9	vanadium 50.9	Cr chromium 52.0	Mn manganese 54.9	Fe ion 55.8	Co cobst 58.9	Ni nickel 58.7	Cu copper 63.5	Zn zine 65.4	Ga gallium 69.7	Ge germanium 72.6	As arsenic 74.9	Se selenium 79.0	Br bromine 79.9	Kr krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb rubidium 85.5	Sr strontium 87.6	Y ythium 88.9	Zr zirconium 91.2	Nb niobium 92.9	Mo molybdenum 95.9	Tc technetium	Ru ruthenium 101.1	Rh rhodium 102.9	Pd paladium 106.4	Ag silver 107.9	Cd cadmium 112.4	In indum 114.8	Sn tin 118.7	Sb antimony 121.8	Te telurium 127.6	I iodine 126.9	Xe xenon 131.3
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs caesium 132.9	Ba barium 137.3	lanthanoids	Hf hafnium 178.5	Ta tantalum 180.9	tungsten 183.8	Re menium 186.2	Os osmium 190.2	Ir Hidum 192.2	Pt platinum 195.1	Au gold 197.0	Hg mercury 200.6	T <i>I</i> thallium 204.4	Pb lead 207.2	Bi bismuth 209.0	Po polonium	At astatine	Rn
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrlum	108 Hs hassium	109 Mt metrerium	110 Ds darmetactium	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge