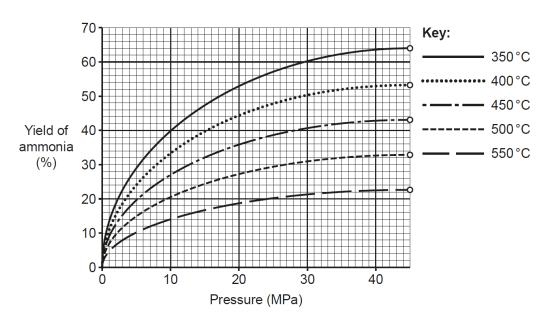


GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 33

1 Ammonia is used to make synthetic fertilisers.


Ammonia is made by the Haber process.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

(a) The reaction in the Haber process reaches equilibrium.

Describe the rates of the forward and reverse reactions at equilibrium.

(b) The graph shows the effect of temperature and pressure on the yield of ammonia in the Haber process:

(i) State the **lowest** temperature and pressure necessary to get a yield of ammonia of 15%.

Temperature =°C

Pressure = MPa

[1]

[1]

- (ii) Suggest **one** disadvantage of using a temperature of 350 °C rather than 450 °C [1] in the Haber process.
- (iii) A reactor starts with 12.0 tonnes of hydrogen and excess nitrogen.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

How many **tonnes of ammonia** would be produced from 6 × 10⁶ moles of hydrogen, H2?

1 tonne =
$$1 \times 10^6$$
 g

Use the equation: number of moles = $\frac{\text{mass of substance}}{\text{relative formula mass (g)}}$

Mass of ammonia = tonnes

- (c) Sarah makes ammonium sulfate from ammonia in a laboratory. This is her method:
 - Add excess ammonia to dilute sulfuric acid in an evaporating basin.
 - Boil the solution until it does not smell of ammonia.
 - Cool the basin until crystals form in the solution.

The crystals that form in the solution are **impure**.

Describe what Sarah can do to get pure ammonium sulfate crystals.

[2]

(d) Ammonium sulfate can be mixed with other substances to make compound fertilisers.

Suggest why compound fertilisers are better for farmers than pure ammonium sulfate.

[1]

Total Marks for Question Set 33:9

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li sthum 6.9	4 Be beryllum 9.0											5 B boron 10.8	6 C carbon 12.0	7 N nitrogen 14.0	8 O cxygen 16.0	9 F fluorine 19.0	10 Ne neon 20.2
11 Na sodium 23.0	Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 27.0	14 Si silicon 28.1	15 P phosphorus 31.0	16 S suffer 32.1	17 C <i>l</i> chlorine 35.5	18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ion 55.8	27 Co cobet 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zine 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru rufterium 101.1	45 Rh modum 102.9	46 Pd pelladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te teturium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir idum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fir francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt metrerium	110 Ds darmetactitum	111 Rg roentgenium	112 Cn copemicium		114 FI flerovium		116 Lv livermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge