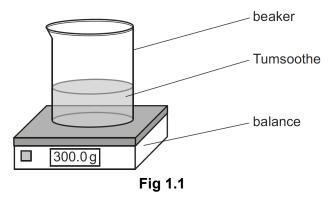
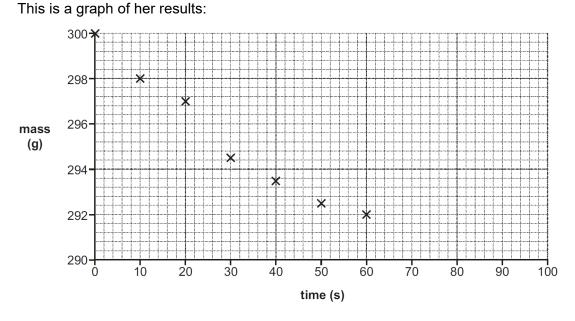


GCSE Chemistry B (Twenty First Century Science)


J258/03 Breadth in chemistry (Higher Tier)

Question Set 24

'Tumsoothe' is a medicine that cures indigestion.


Tumsoothe is a solution of 'sodium bicarbonate', NaHCO₃.

Layla puts some Tumsoothe in a beaker and places it on a balance.

She adds dilute hydrochloric acid to the contents of the beaker. CO2 is given off.

(a) Layla records the mass of the beaker and its contents every 10 seconds up to 60 seconds.

(i) C	Draw a curve of best fit on the graph in Fig 1.2 .	[1]
-------	---	-----

(ii) Use Fig. 1.2 to calculate the initial rate of reaction.

Initial rate of reaction = g / s [2]

(iii) Describe how the rate of reaction changes with time. [1]

1

	(iv)) Use Fig. 1.2 to estimate the total mass loss in the reaction after 100 seconds has passed.										
		Explain how you obtained your answer.										
		Total mass loss =g	[2]									
(b)		Layla does her experiment a second time. She uses an excess of acid and a different volume of Tumsoothe.										
		8 g of CO2 is given off.										
	(i)	Calculate the number of moles of CO2 given off.										
		Use the formula: number of moles = mass of substance relative formula mass										
	Give your answer to 2 significant figures.											
		Number of moles of CO ₂ = mol	[2]									
	(ii)	This is an equation for the reaction:										
		NaHCO ₃ (aq) + HCl (aq) \rightarrow CO ₂ (g) + NaCl (aq) + H ₂ O(I)										
		Calculate the mass of NaHCO3 that reacts.										
		Use the formula: number of moles = 										
		Give your answer to 2 significant figures.										
		Use your answer to (b)(i) to help you.										
		Mass of NaHCO3 =g	[2]									
(c)		Layla wants to measure the concentration of NaHCO3 in Tumsoothe.										
		She titrates her Tumsoothe solution with hydrochloric acid.										
	(i)	Layla measures out 25.0 cm3 of Tumsoothe.										
		What piece of apparatus should Layla use to measure out this volume?	[1]									

[1]

(ii) Layla repeats her titration three times. Her results are shown.

Repeat	1	2	3
Volume of acid added to neutralise NaHCO ₃ (cm ³)	20.10	20.20	20.60

What can Layla do to improve the quality of her results?

[1]

Total Marks for Question Set 24: 12

Resource Materials

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2	_	Key atomic number Symbol relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li Mium 6.9 11	4 Be beryllum 9.0 12											5 B boton 10.8 13	6 C carbon 12.0 14	7 N nitrogen 14.0 15	8 0 000000 16.0 16	9 F fluorine 19.0 17	10 Ne 20.2 18
Na sodum 23.0	Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	Al aluminium 27.0	Si silicon 28.1	P phosphorus 31.0	S sulfur 32.1	Cl chlorine 35.5	Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti ttanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe ^{Ion} 55.8	27 Co cobatt 58.9	28 Ni nickel 58.7	29 Cu 63.5	30 Zn zinc 65.4	31 Ga ^{gallum} 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb nubidium 85.5	38 Sr strontium 87.6	39 Y yttilum 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh nodium 102.9	46 Pd paladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn ^{tin} 118.7	51 Sb antimory 121.8	52 Te witurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba ^{barlum} 137.3	57–71 Ianthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os ssmium 190.2	77 Ir ^{itidum} 192.2	78 Pt platinum 195.1	79 Au ^{gold} 197.0	80 Hg marcury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radum	89-103 actinoids	104 Rf networknotikum	105 Db dubnium	106 Sg seeborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitrerium	110 Ds dermetaditum	111 Rg roentgenium	112 Cn copernicium		114 FZ flerovium		116 Lv Ivermorium		

The Periodic Table of the Elements

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge