

GCSE Chemistry B (Twenty First Century Science)

J258/03 Breadth in chemistry (Higher Tier)

Question Set 18

1

Some cars use hydrogen fuel cells instead of petrol.

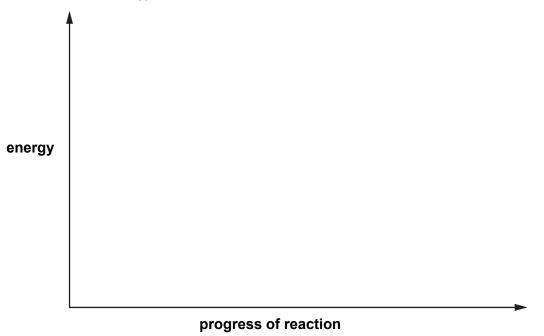
This is the reaction that happens in the hydrogen fuel cell:

2H2 + O2 → 2H2O

(a)

Suggest **one** advantage and **one** disadvantage of using fuel cells instead of petrol.

[2]


[3]

(b)

Complete a reaction profile for the above reaction of hydrogen with oxygen.

On the profile, show:

- the formulae of reactants and products
- the activation energy.

(c)

Burning 10 g of hydrogen gives out 1200 kJ of energy.

How much energy is given out when 1.0 mole of H₂ burns?

Use the formula: number of moles = $\frac{\text{mass of substance}}{\text{relative formula mass}}$

Energy = kJ [2]

Total Marks for Question Set 18:7

Resource Materials

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0	2		Key atomic number Symbol name relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li thium 6.9 11 Na sodium 23.0	4 Be beryllum 9.0 12 Mg magnesium 24.3			_		7			40	44	42	5 B boson 10.8 13 Al aluminium	6 C carbon 12.0 14 Si silicon 28.1	7 N nitrogen 14.0 15 P phosphorus 31.0	8 O coygen 16.0 16 S suffer 32.1	9 F fluorine 19.0 17 C <i>l</i> chlorine	10 Ne neon 20.2 18 Ar argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	3 21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	6 24 Cr chromium 52.0	7 25 Mn manganese 54.9	26 Fe	9 27 Co cobst 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zinc 65.4	27.0 31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35.5 35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y ythlum 88.9	40 Zr zironium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh modum 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indum 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te telulum 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barlum 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re menium 186.2	76 Os osmium 190.2	77 Ir Hidum 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>I</i> thallum 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seeborgium	107 Bh bohilum	108 Hs hassium	109 Mt meitnerium	110 Ds dammetactitum	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv Ivermorium		

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge